I-Nan Lin

List of Publications by Year

 in descending order
Source: https:/|exaly.com/author-pdf/705356/publications.pdf

Version: 2024-02-01

1	Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3â $\epsilon^{\prime \prime}\left(1 \hat{a}^{\wedge} x\right) \mathrm{Ba}(\mathrm{Mg} 1 / 3 \mathrm{Nb} 2 / 3) \mathrm{O} 3$ ceramics: I. Raman spectroscopy. Journal of Applied Physics, 2003, 94, 3360-3364.	1.1	119
2	Self-Assembled Growth, Microstructure, and Field-Emission High-Performance of Ultrathin Diamond Nanorods. ACS Nano, 2009, 3, 1032-1038.	7.3	119
3	Effect of Sintering Aids on Microstructures and PTCR Characteristics of (Sr0.2Ba0.8)TiO3 Ceramics. Journal of the American Ceramic Society, 1993, 76, 827-832.	1.9	98
4	In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode. Nanoscale, 2013, 5, 1159.	2.8	80
5	Microstructure and Nonlinear Properties of Microwaveâ€Sintered $\mathrm{ZnOâ} \in \mathrm{~V}$ <sub $>2</$ sub >0 < sub $>5<\mid$ sub 〉 Varistors: I, Effect of V₂O₅Doping. Journal of the American Ceramic Society, 1998, 81, 2942-2948.	1.9	69
6	Self-organized multi-layered grapheneâ€"boron-doped diamond hybrid nanowalls for high-performance electron emission devices. Nanoscale, 2018, 10, 1345-1355.	2.8	57
7	Electron field emission properties of pulsed laser deposited carbon films containing carbon nanotubes. Journal of Vacuum Science \& Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1034.	1.6	54
8	Far-infrared, Raman spectroscopy, and microwave dielectric properties of $\mathrm{La}\left(\operatorname{Mg} 0.5 \mathrm{Ti}\left(0.5 \hat{a}^{\wedge} \mathrm{x}\right) \mathrm{Snx}\right) \mathrm{O} 3$ ceramics. Journal of Applied Physics, 2007, 102, 064906.	1.1	48
9	Improvement of (Pblâ^xLax)(ZryTilâ^y) lâ^x/4O3 ferroelectric thin films by use of SrRuO3/Ru/Pt/Ti bottom electrodes. Applied Physics Letters, 1998, 72, 1182-1184.	1.5	47
10	Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3â€"(lâ̂^x)Ba(Mg1/3Nb2/3)O3 ceramics: Il. Infrared spectroscopy. Journal of Applied Physics, 2003, 94, 3365-3370.	1.1	44
11	Defect structure and electron field-emission properties of boron-doped diamond films. Applied Physics Letters, 1999, 75, 2857-2859.	1.5	41
12	Modification on the electron field emission properties of diamond films: The effect of bias voltage applied in situ. Journal of Applied Physics, 1998, 84, 3890-3894.	1.1	40
13	Effect of boron doping on the electron-field-emission properties of nanodiamond films. Journal of Applied Physics, 2005, 97, 054310.	1.1	40

19
20

> Improvement in Tribological Properties by Modification of Grain Boundary and Microstructure of Ultrananocrystalline Diamond Films. ACS Applied Materials \& Interfaces, 2013, 5, 3614-3624.
4.0

37

Ferroelectric properties of (Pb0.97La0.03)(Zr0.66TiO.34)0.9875O3 films deposited on Si 3 N 4 -coated Si
1.5 substrates by pulsed laser deposition process. Applied Physics Letters, 1997, 70, 46-48.

36
21 Structural and Electrical Properties of Conducting Diamond Nanowires. ACS Applied Materials \&
$4.0 \quad 36$
Interfaces, 2013, 5, 1294-1301.

3D Hierarchical Boron-Doped Diamond-Multilayered Graphene Nanowalls as an Efficient Supercapacitor Electrode. Journal of Physical Chemistry C, 2019, 123, 15458-15466.
1.5

35

Microstructure and Nonlinear Properties of Microwaveâ€Sintered ZnOâ€v<sub>2<|sub>O₅
23 Varistors: II, Effect of $\mathrm{Mn}\langle\mathrm{sub}\rangle 3<|s u b\rangle \mathrm{O}\langle s u b\rangle 4<|s u b\rangle$ Doping. Journal of the American Ceramic
1.9 Society, 1998, 81, 2949-2956.

24 Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation technique.
Diamond and Related Materials, 2006, 15, 353-356.
1.8

34

25 | Direct Observation and Mechanism for Enhanced Electron Emission in Hydrogen Plasma-Treated |
| :--- |
| Diamond Nanowire Films. ACS Applied Materials \& Interfaces, 2014, 6, 8531-8541. |

Nanocrystalline diamond microstructures from $\mathrm{Ar} / \mathrm{H} 2 / \mathrm{CH} 4$-plasma chemical vapour deposition.
CrystEngComm, 2011, 13, 6082.
Effect of nitrogen doping on the electron field emission properties of chemical vapor deposited
diamond films. Diamond and Related Materials, 2000, 9, 1591-1599.

Engineering the Interface Characteristics of Ultrananocrystalline Diamond Films Grown on
Au-Coated Si Substrates. ACS Applied Materials \& Interfaces, 2012, 4, 4169-4176.

Ellipsometric investigation of nitrogen doped diamond thin films grown in microwave CH4/H2/N2
31 plasma enhanced chemical vapor deposition. Applied Physics Letters, 2016, 108, .

32 Low-temperature growth of ZnO nanowires. Journal of Materials Research, 2003, 18, 714-718.
1.2

31

33 Tribological Properties of Ultrananocrystalline Diamond Films: Mechanochemical Transformation of Sliding Interfaces. Scientific Reports, 2018, 8, 283.
1.6

31

Modification of Piezoelectric Characteristics of the $\mathrm{Pb}(\mathrm{Mg}, \mathrm{Nb}) \mathrm{O} 3-\mathrm{PbZrO3}-\mathrm{PbTiO} 3$ Ternary System by
Aliovalent Additives. Journal of the American Ceramic Society, 1995, 78, 178-182.
1.9

30

Effect of Y2O3/MgO Co-doping on the electrical properties of base-metal-electroded BaTiO3 materials.
Journal of the European Ceramic Society, 2004, 24, 1479-1483.
2.8

30

Bias-enhanced nucleation and growth processes for improving the electron field emission properties

Bias-Enhanced Nucleation and Growth Processes for Ultrananocrystalline Diamond Films in
41 Ar/CH₄ Plasma and Their Enhanced Plasma Illumination Properties. ACS Applied Materials
$4.0 \quad 26$
\& Interfaces, 2014, 6, 10566-10575.

42 Microplasma illumination enhancement of vertically aligned conducting ultrananocrystalline
diamond nanorods. Nanoscale Research Letters, 2012, 7, 522.
Enhancement of the Stability of Electron Field Emission Behavior and the Related Microplasma Devices
of Carbon Nanotubes by Coating Diamond Films. ACS Applied Materials \& Interfaces, 2014, 6,
$11589-11597$.

43 of Carbon Nanotubes by Coating Diamond Films. ACS Applied Materials \& Interfaces, 2014, 6,
4.0

Comparative measurements of the piezoelectric coefficient of a lead zirconate titanate film by
44 piezoresponse force microscopy using electrically characterized tips. Journal of Vacuum Science \&
Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and
1.6

23 Phenomena, 2003, 21, 916.
Freestanding Ultrananocrystalline Diamond Films with Homojunction Insulating Layer on Conducting
45 Layer and Their High Electron Field Emission Properties. ACS Applied Materials \& Interfaces, 2011, 3,
4.0

4007-4013.

Electron Field Emission Enhancement of Vertically Aligned Ultrananocrystalline Diamondâ€€oated ZnO
5.2

23
$47 \quad$ Fast Photoresponse and Long Lifetime UV Photodetectors and Field Emitters Based on ZnO/Ultrananocrystalline Diamond Films. Chemistry - A European Journal, 2015, 21, 16017-16026. 1.7 23Catalytically induced nanographitic phase by a platinum-ion implantation/annealing process to48 improve the field electron emission properties of ultrananocrystalline diamond films. Journal of2.723Materials Chemistry C, 2015, 3, 2632-2641.
49 Superlubrication properties of ultra-nanocrystalline diamond film sliding against a zirconia ball. RSC 1.7 23 Advances, 2015, 5, 100663-100673.

Single-step grown boron doped nanocrystalline diamond-carbon nanograss hybrid as an efficient

Development of long lifetime cathode materials for microplasma application. RSC Advances, 2014, 4,
51 47865-47875.

The role of nanographitic phase on enhancing the electron field emission properties of hybrid

Journal Applied Physics, 2007, 101,064308.
1.7

21

Enhancement of the Electron Field Emission Properties of Ultrananocrystalline Diamond Films via Hydrogen Post-Treatment. ACS Applied Materials \& Interfaces, 2014, 6, 14543-14551.
61 Synthesis of diamond using ultra-nanocrystalline diamonds as seeding layer and their electron field
Growth, structural and plasma illumination properties of nanocrystalline diamond-decorated
graphene nanoflakes. RSC Advances, 2016, 6, 63178-63184.

$64 \quad$| Microwave cavity perturbation of nitrogen doped nano-crystalline diamond films. Carbon, 2019, 145 |
| :--- |
| $740-750$. |

$65 \quad$| Field emission effects of nitrogenated carbon nanotubes on chlorination and oxidation. Journal of |
| :--- |
| Applied Physics, 2008, 104, 063710. |

Growth behavior of nanocrystalline diamond films on ultrananocrystalline diamond nuclei: The transmission electron microscopy studies. Journal of Applied Physics, 2009, 105, .
1.1

Tribological Properties of Ultrananocrystalline Diamond Films in Inert and Reactive
70 Tribo-Atmospheres: XPS Depth-Resolved Chemical Analysis. Journal of Physical Chemistry C, 2018, 122,
1.5

18 8602-8613.

71 Microwave sintering $\mathrm{Pb}(\mathrm{ZrO} .52 \mathrm{TiO} .48)$ O3piezoelectric ceramics. Ferroelectrics, 2001, 262, 293-298.

78 Conventional and microwave sintering studies of SrTiO ₃. Journal of Materials Research,
79 Field-emission enhancement of Mo-tip field-emitted arrays fabricated by using a redox method. IEEE$2.2 \quad 15$
80 Heterogranular-Structured Diamondâ€"Gold Nanohybrids: A New Long-Life Electronic Display Cathode. ACS Applied Materials \& Interfaces, 2015, 7, 27078-27086.4.0
Nitrogen Incorporated Ultrananocrystalline Diamond Microstructures From Biasâ€Enhanced81 Microwave $\mathrm{N}<$ sub $>2</$ sub $>/ \mathrm{CH}$ <sub> $4</$ sub $>$ â \in Plasma Chemical Vapor Deposition. Plasma Processes and1.615Polymers, 2016, 13, 419-428.Phase transitions and critical phenomena of tiny grains carbon films synthesized in microwaveâ€based

Enhancing the stability of microplasma device utilizing diamond coated carbon nanotubes as cathode
91
92
93

> Boron-Doped Nanocrystalline Diamondâ€"Carbon Nanospike Hybrid Electron Emission Source. ACS Applied Materials \& Interfaces, 2019, 11, 48612-48623.
4.0

13

Comparison on the effect of (La0.5Sr0.5) MnO3 and (La0.5Sr0.5)CoO3 buffer layers on fatigue
properties of ($\mathrm{Pb0} 0.6 \mathrm{SrO} .4$) TiO3 thin films prepared by pulsed laser deposition. Journal of Applied
1.1

Physics, 2000, 87, 8695-8699.
High-Performance Electron Field Emitters and Microplasma Cathodes Based on Conduct
Granular Structured Diamond Materials. ACS Applied Materials \& Interfaces, 2017,
94 Straight imaging and mechanism behind grain boundary electron emission in Pt-doped
ultrananocrystalline diamond films. Carbon, 2017, 111, 8-17.
$4.0 \quad 12$

Straight imaging and mechanism behind grain boundary electron emission in Pt-doped
5.4

12

Improvement on the degradation of microwave sintered ZnO varistors by postannealing. Journal of
Materials Research, 1998, 13, 1560-1567.
$1.2 \quad 11$

Numerical indicator field emission display using carbon nanotubes as emitters. Journal of Vacuum
96 Science \& Technology an Official Journal of the American Vacuum Society B, Microelectronics
1.6 Processing and Phenomena, 2001, 19, 1023.

```
97 Development of X7R Type Base-Metal-Electroded BaTiO3Capacitor Materials by Co-Doping of
MgO/Y2O3Additives. Ferroelectrics, 2006, 332, 35-39.
```

$0.3 \quad 11$

Transparent ultrananocrystalline diamond films on quartz substrate. Diamond and Related Materials, 2008, 17, 476-480.
1.8

11
99 Enhancement in electron field emission in ultrananocrystalline and microcrystalline diamond films upon 100 MeV silver ion irradiation. Journal of Applied Physics, 2009, 105, 083707.

The â€œcascade effectâ€•of nano/micro hierarchical structure: A new concept for designing the high photoactivity materials â€" An example for TiO2. Applied Catalysis B: Environmental, 2013, 142-143, 752-760.
者

Hierarchical hexagonal boron nitride nanowallâ $€^{\text {"c diamond nanorod heterostructures with enhanced }}$
optoelectronic performance. RSC Advances, 2016, 6, 90338-90346.
:---
Nanocrystalline and Ultrananocrystalline Diamond Films Due to Plasma Treatment Process. ACS
Applied Materials \& Interfaces, 2018, 10, 28726-28735.

Deposition of diamond films on SiO 2 surfaces using a high power microwave enhanced chemical vapor deposition process. Journal of Applied Physics, 1997, 81, 486-491.

Improvement on electron field emission properties of nanocrystalline diamond films by co-doping of
117 boron and nitrogen. Journal of Vacuum Science \& Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1074.

Synthesis of diamond nanotips for enhancing the plasma illumination characteristics of
118 capacitive-type plasma devices. Journal of Vacuum Science and Technology B:Nanotechnology and
0.6
$1.1 \quad 8$ Microelectronics, 2013, 31, 02B109.

119 The potential application of ultra-nanocrystalline diamond films for heavy ion irradiation detection. AIP Advances, 2013, 3, .
$0.6 \quad 8$

Controlling morphology-structure of gold tiny particles, nanoparticles and particles at different
120 pulse rates and pulse polarity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019,
$0.7 \quad 8$ 10, 025015.

121 Direct observation and mechanism of increased emission sites in Fe-coated microcrystalline diamond
$1.1 \quad 7$ films. Journal of Applied Physics, 2012, 111, .

Bias enhanced nucleation and growth processes for improving the electron field emission properties
$2.2 \quad 7$ of diamond films. Surface and Coatings Technology, 2013, 228, S175-S178.

Change of diamond film structure and morphology with $N<$ sub $>2</$ subs addition in MW PECVD
123 apparatus with linear antenna delivery system. Physica Status Solidi (A) Applications and Materials
$0.8 \quad 7$ Science, 2014, 211, 2296-2301.

The microstructural evolution of ultrananocrystalline diamond films due to P ion implantation and annealing process-dosage effect. Diamond and Related Materials, 2015, 54, 47-54.

129 Terahertz Response of Bulk Ba(Mg1/3Ta2/3)O3. Japanese Journal of Applied Physics, 2000, 39, 5642-5644.
$0.8 \quad 6$

Characteristics of carbon nanowires synthesized by local arc-discharging technique. Journal of
130 Vacuum Science \& Technology an Official Journal of the American Vacuum Society B, Microelectronics
1.6 Processing and Phenomena, 2001, 19, 1040.

131 Baseâ $€$ Metalâ€Electroded $\mathrm{BaTiO}\langle$ sub $\rangle 3\langle/ s u b\rangle$ Capacitor Materials with Duplex Microstructures. Journa of the American Ceramic Society, 2004, 87, 851-858.
1.9

Influence of Crystal Structure on the Fatigue Properties of

Journal of the American Ceramic Society, 1997, 80, 1065-1072
133 Ultra-Fine Ba2Ti9O20 Powders Synthesized by Inverse Microemulsion Processing and their Microwave
Dielectric Properties. Journal of the American Ceramic Society, 2005, 88, 3405-3411.
1.9

Effect of SnO 2 addition on the dielectric properties of $\mathrm{Ba} 2 \mathrm{Ti9O} 20$ ceramics in the high-frequency regime. Journal of Applied Physics, 2006, 100, 094104.

Effect of Mo-buffer layer on the growth behavior and the electron field emission properties of UNCD
films. Diamond and Related Materials, 2009, 18, 181-185.

Defect structure for the ultra-nanocrystalline diamond films synthesized in H 2 -containing $\mathrm{Ar} / \mathrm{CH} 4$ plasma. Diamond and Related Materials, 2011, 20, 368-373.
1.8

6

The induction of a graphite-like phase by Fe-coating/post-annealing process to improve the electron
137 field emission properties of ultrananocrystalline diamond films. Diamond and Related Materials, 2012,
1.8 24, 188-194.

138 Development of diamond cathode materials for enhancing the electron field emission and plasma
138 characteristics using two-step microwave plasma enhanced chemical vapor deposition process.
$0.6 \quad 6$ Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 021202.

139 Synthesis of ultra-nano-carbon composite materials with extremely high conductivity by plasma post-treatment process of ultrananocrystalline diamond films. Applied Physics Letters, 2015, 107, .

Gold Nanostructures and Microstructures with Tunable Aspect Ratios for High-Speed Uni- and Multidirectional Photonic Applications. ACS Applied Nano Materials, 2020, 3, 9410-9424.
$2.4 \quad 6$
$1.5 \quad 6$
$141 \mathrm{Ba}(\mathrm{Zn} 1 / 3 \mathrm{Nb} 2 / 3) \mathrm{O}$ ceramics synthesized by spray pyrolysis technique. Ferroelectrics, 1999, 231, 243-248. 5

Electrical properties of ZnO varistors prepared by microwave and conventional sintering process.

145	Anomalous Behavior of Loadâ€Dependent Friction on Ultraâ ENanocrystalline Diamond Film. Advanced Engineering Materials, 2014, 16, 1098-1104.	1.6
146	Improvement of electron field emission properties of nanocrystalline diamond films by a plasma post-treatment process for cathode application in microplasma devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6
Engineered design and fabrication of long lifetime multifunctional devices based on electrically conductive diamond ultrananowire multifinger integrated cathodes. Journal of Materials Chemistry C, 2016, 4, 9727-9737.	2.7	

149 High Tcpositive temperature coefficient resistivity (Pb 0.6 SrO .3 BaO .1) TiO3materials prepared by 0.3 microwave sintering. Ferroelectrics, 1997, 195, 65-68.On the microwave sintering technique applied for enhancing the properties of PTC resistors and zno150 varistors. Ferroelectrics, 1999, 231, 159-168.0.34
151 Improvement on microwave dielectric properties of Ba(Mgâ..."Taâ...")O3materials prepared via a two-step process. Ferroelectrics, 2000, 238, 81-89. 0.3THZ transmission spectroscopy applied to dielectrics and microwave ceramics. Ferroelectrics, 2001,
152 254, 113-120.
Evidence of electron-emission-enhanced nucleation of diamonds in microwave plasma-enhancedchemical vapor deposition. Applied Physics Letters, 2001, 79, 3257-3259.
Study on bias-enhanced nucleation of diamonds by simulating the time dependence of bias current. Journal of Applied Physics, 2002, 91, 3934-3936.
Effect of Y 2 O 3 Doping on the Electrical Properties of Base-Metal-Electroded Capacitor Materials.
155 Ferroelectrics, 2002, 270, 135-140.
0.3 41.54
Electron field emission properties of carbon nanotubes grown on nickel caps. Journal of Vacuum156 Science \& Technology an Official Journal of the American Vacuum Society B, Microelectronics1.6Processing and Phenomena, 2003, 21, 1640.
157 Vacuum Science \& Technology an Official Journal of the American Vacuum Society B, Microelectronics 1.6
Processing and Phenomena, 2003, 21, 1688.4
Study of Microwave Dielectric Properties of Perovskite Thin Films by Near-Field Microscopy. Journal0.8of Electroceramics, 2004, 13, 261-265.4
163
164

Microstructural Evolution of Nanocrystalline Diamond Films Due to
$163 \mathrm{CH}<$ sub $>4</$ sub $>\mid \mathrm{Ar} / \mathrm{H}<$ sub $>2</$ sub> Plasma Post-Treatment Process. ACS Applied Materials \&
4.0 Interfaces, 2015, 7, 21844-21851.

Hydrogenation of diamond nanowire surfaces for effective electrostatic charge storage. Nanoscale, 2021, 13, 7308-7321.
2.8

4

165 | Single-step synthesis of core-shell diamond-graphite hybrid nano-needles as efficient supercapacitor |
| :--- |
| electrode. Electrochimica Acta, 2021, 397, 139267 . |

Enhancing the densification process on $\mathrm{Ba}(\mathrm{Mg} 1 / 3 \mathrm{Ta} 2 / 3) \mathrm{O} 3$ microwave dielectrics by Y2O3incorporation.
166 Ferroelectrics, 1999, 231, 103-108.
0.3

3

Electrical and optical properties of microwave dielectric thin films prepared by pulsed laser deposition. Integrated Ferroelectrics, 2001, 32, 33-43.
$0.3 \quad 3$

Effect of catalyst on growth behavior of carbon nanotube synthesizing by microwave heating
168 thermal chemical vapor deposition process. Journal of Vacuum Science \& Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1026.

Effect of catalyst on growth behavior of carbon nanotubes synthesized by microwave heating
169 thermal chemical vapor deposition process. Journal of Vacuum Science \& Technology an Official 1 Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, $2003,21,400$.

170 Microwave Dielectric Mechanism Studied by Microwave Near-Field Microscopy and Raman
Spectroscopy. Journal of Electroceramics, 2004, 13, 281-286.
0.8

3

$$
\begin{aligned}
& \text { Highly sensitive pH dependent acetone sensor based on ultrananocrystalline diamond materials at } \\
& \text { room temperature. RSC Advances, } 2016,6,102821-102830 \text {. }
\end{aligned}
$$

Interfacial effects in ZnO nanotubes/needle-structured graphitic diamond nanohybrid for detecting dissolved acetone at room temperature. Applied Surface Science, 2017, 426, 630-638.
3.1

3
172

173 Forces driving amalgamation of nanoparticles and particles in solution. Forces in Mechanics, 2022, 7, 100076.
1.3

3

Effect of oxygen pressure on microstructure, texture and growth characteristics of laser ablated
$174 \quad \mathrm{BaTiO} 3$ thin films. Integrated Ferroelectrics, 1995, 10, 81-88.
0.3

2

Microstructural characteristics of microwave-sintered semi-conductive Pb0.6Sr0.4Tio3ceramics.
Ferroelectrics, 1999, 231, 37-42.
$0.3 \quad 2$

Preparation of PZT ferroelectric thick films by nanopowder-metal-organic decomposition process.
$0.3 \quad 2$
Integrated Ferroelectrics, 2000, 30, 213-224.

Improvement on ferroelectric properties of metal-organic decomposited PZT thin film prepared by using prenucleation layer. Integrated Ferroelectrics, 2000, 30, 157-164.
$0.3 \quad 2$

Crystalline and optical properties of PLZT films prepared by pulsed laser deposition. Integrated Ferroelectrics, 2000, 31, 69-75.
181
182
185 Microstructure and friction behaviour in nanocrystalline diamond films. Philosophical Magazine,

188 Microstructural characteristics and nonequilibrium core-shell phase in ($\mathrm{PbxSrlâ}{ }^{\wedge} \times$) TiO3materials and

 their electrical properties. Ferroelectrics, 2000, 241, 25-34.$0.3 \quad 1$ Thermal stability in diamond-like carbon coated planar electron field emission arrays. Journal of
189 Vacuum Science \& Technology an Official Journal of the American Vacuum Society B, Microelectronics

PREPARATION OF HIGHLY TEXTURED ALN FILMS USING MO AND TI ELECTRODE FOR INTEGRATED ALN-BASED FILM BULK ACOUSTIC WAVE RESONATORS. Integrated Ferroelectrics, 2006, 80, 407-413.

Modification of ultrananocrystalline diamond film microstructure via Fe-coating and annealing for enhancement of electron field emission properties. Journal of Applied Physics, 2012, 112, 033708.
1.1

1

The 3D-tomography of the nano-clusters formed by Fe-coating and annealing of diamond films for
201 enhancing their surface electron field emitters. AIP Advances, 2012, 2, 032153.
$0.6 \quad 1$

The role of nano-graphite phase on enhancing the plasma illumination characteristics of the diamond-coated inverted pyramidal cavities. Thin Solid Films, 2013, 529, 147-152.

On the role of graphite in ultrananocrystalline diamond films used for electron field emitter
203 applications (Phys. Status Solidi A 10â̂•2014). Physica Status Solidi (A) Applications and Materials Science,
0.8 2014, 211, n/a-n/a.

204 Enhancement of plasma illumination characteristics via typical engineering of diamondâ€"graphite nanocomposite films. CrystEngComm, 2016, 18, 1800-1808.
1.3

Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically

aligned nitrogen-doped nanocrystalline diamond nanorods. MRS Communications, 2018, 8, 1311-1320.

205

Electron Field Emission Enhancement of Vertically Aligned Ultrananocrystalline Diamond-Coated ZnO Coreâ€"Shell Heterostructured Nanorods. , 2014, 10, 179.

1

$$
207 \text { Laser ablated pyroelectric thin films for room temperature IR sensors. , 0, , . }
$$

The growth behavior of Pb -containing perovskite thin films using pulsed laser deposition technique.,
0, , .

209 Enhanced densification of SrTiO/sub 3/ perovskite ceramics. , 0, , .
0

Selected-area deposition of diamond films on $\mathrm{SiN} / \mathrm{Si}$ surfaces with microwave plasma enhanced CVD., 0, , .

> Deposition of diamond films on $\mathrm{SiO} / \mathrm{sub} 2 /$ surface using high power microwave enhanced chemical vapor deposition process. $, 0, \ldots$

212 MIM and MIS electret response of laser deposited Sr/sub x/Ba/sub 1-x/Nb/sub 2/O/sub 6/ thin films. , 0, , .
0

213 DC bias effect on the synthesis of [001] textured diamond films on silicon. , 0, , .
0

214 Growth behavior of $\mathrm{LaNiO} /$ sub 3 / and their effect on the pulsed laser deposited PLZT films. , 0, , .

Influence of SrTiO/sub 3/ or Pt buffer layer on the formation of perovskite phase Pb/sub 1-x/La/sub $x /(Z r / s u b y / T i / s u b 1-y /) /$ sub $1-x / 4 / O /$ sub $3 /$ films prepared by pulsed laser deposition. , $0, ~, ~ . ~$
Effect of substrate temperature on ferroelectric properties of ($\mathrm{Pb} 1 \hat{a}^{\wedge} \times \mathrm{Lax}$) Tilâan $\times / 4 \mathrm{O} 3 / \mathrm{SrRuO} 3$ thin films.
Ferroelectrics, 1999, 232, 111-116.

Characterization of $\mathrm{Ba}(\mathrm{Mg} /$ sub $1 / 3 / \mathrm{Ta} /$ sub 2/3/) $\mathrm{O} /$ sub $3 /$ and $\mathrm{Bi} /$ sub $2 /(\mathrm{Zn} /$ sub $1 / 3 / \mathrm{Nb} /$ sub 2/3/)/sub 2/O/sub $7 \mid$ microwave dielectrics in optical and microwave frequency regions. , 0, , .

Effect of excess-PB and prenucleation layer on properties of $\mathrm{Pb}($ ZryTil-y $) \mathrm{O} 3$ thin films prepared by mod process. Integrated Ferroelectrics, 2000, 30, 203-212.

Formation and properties of lead Titanate thick films prepared by nanopowder-metal-organic decomposition process. Integrated Ferroelectrics, 2000, 30, 61-70.

Properties of thick PZT films prepared by modified metal organic decomposition process. Ferroelectrics, 2001, 260, 243-248.

Powder preparation and sintering process on core-shell structures of $\mathrm{Pb0.6Sr0.4TiO3}$ materials. Ferroelectrics, 2001, 263, 279-284.
0.3

On the nano-power incorporated metal-organic decomposition process for the synthesis of Pb -based
ferroelectric thick films. Ferroelectrics, 2001, 260, 237-242.
On the nano-power incorporated metal-organic decomposition process for the synthesis of Pb -based
ferroelectric thick films. Ferroelectrics, 2001, 260, 237-242.
0.3

0

Thick $\mathrm{Pb}(\mathrm{Ni} 1 / 3 \mathrm{Nb} 2 / 3$) O 3 -(Pb lâ̂’x) (Ti lâ̂’y $\mathrm{Zr} y$) O 3 Films Prepared by Tape-Casting. Integrated Ferroelectrics, 2002, 46, 3-15.

225 Design of Multilayer Microwave Devices by Coupling Matrix Algorithm for LTCC Process. Integrated
225 Ferroelectrics, 2002, 49, 73-82.

Properties of PZT Nano-Powder Doped Silica Films Prepared by Sol-Gel Process. Integrated
226 Ferroelectrics, 2002, 50, 251-260.
0.3
0.3

0

227 Terahertz and Infrared Spectroscopic Study on Dielectric Properties of Bi $2(\mathrm{Zn} 1 / 3 \mathrm{Nb} 2 / 3) 2 \mathrm{O} 7$ for Microwave Application. Ferroelectrics, 2002, 272, 255-260.
0.3

Ferroelectric Properties of $\operatorname{Pb}\left(\operatorname{Zrl} \hat{a}^{\wedge} \times, \mathrm{Tix}\right) \mathrm{O} 3$ Prepared by Modified Metallo-Organic-Decomposition Process. Integrated Ferroelectrics, 2003, 52, 11-18.

Pulsed Laser Deposited $\mathrm{Ba}(\mathrm{Mg} 1 / 3 \mathrm{Ta} 2 / 3) \mathrm{O} 3$ Microwave Dielectric Thin Films. Integrated Ferroelectrics, 2003, 55, 887-894.

SYNTHESIS OF NANOSTRUCTURE CARBONACEOUS MATERIALS ON TIP USING
230 PLASMA-CHEMICAL-VAPOR-DEPOSITION METHOD. International Journal of Nanoscience, 2003, 02, 231-237.
0

Low Temperature Synthesis of AIN Films by ICP-Assisted Metalorganic Chemical Vapor Deposition
Method. Integrated Ferroelectrics, 2004, 68, 95-103.

Growth Behavior of ($\mathrm{Pr} 2 / 3 \mathrm{Ca} / 3$) MnO3 Layer and the Buffering Effect on $\mathrm{Pb}(\mathrm{Zr}, \mathrm{Ti}) \mathrm{O} 3$ Thin Films.
Integrated Ferroelectrics, 2004, 67, 31-40.
ENHANCEMENT ON CRYSTALLIZATION KINETICS OF Pb(Zr1-xTix)O3 THIN FILMS PREPARED BY
233 METAL-ORGANIC DECOMPOSITION PROCESS BY THE INCORPORATION OF NANO-POWDERS. Integrated
0.3

Ferroelectrics, 2005, 75, 69-79.

Microwave Dielectric Properties of Ba2Ti9O20Materials Prepared by Reaction Sintering Process.

Effect of SnO 2 on improvement on the microwave dielectric properties of Ba2Ti9O20. Journal of
Electroceramics, 2007, 18, 167-173. Electroceramics, 2007, 18, 167-173.

Characteristics of Optical Emission Spectra Induced by Laser Beams and Crystallization of PBZNZT Thin Films. Plasma Processes and Polymers, 2009, 6, S817-S821.

The synthesis of diamond nano-tips for enhancing the plasma illumination characteristics of the
capacitive type plasma devices. , 2012, ,

Fabrication of nitrogen-doped ultrananocrystalline diamond nanowire arrays with enhanced field emission and plasma illumination performance. , 2012, , .

STM observation of surface transfer doping mechanism in 3 keV nitrogen ion implanted UNCD films. , 2013, , .

240 Development of microplasma based UV sources using diamond nanostructured cathodes. , 2014, , .

Enhancement on the stability of electron field emission behavior of carbon nanotubes by coating ultrananocrystalline diamond films. , 2014, ,

The enhancement of the electron field emission behavior of diamond/CNTs materials via the plasma post-treatment process for the applications in triode-type vacuum field emission transistor., 2016, , .

243 DEVELOPMENT OF MICROWAVE DIELECTRIC THIN FILMS. , 2001, , .
0

Investigation of the spectral characteristics of silicon-vacancy centers in ultrananocrystalline diamond nanostructures and single crystalline diamond. Journal of Applied Physics, 2020, 127, 035302.

