List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/705356/publications.pdf Version: 2024-02-01

I-NAN LIN

#	Article	IF	CITATIONS
1	Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3–(1â^x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy. Journal of Applied Physics, 2003, 94, 3360-3364.	1.1	119
2	Self-Assembled Growth, Microstructure, and Field-Emission High-Performance of Ultrathin Diamond Nanorods. ACS Nano, 2009, 3, 1032-1038.	7.3	119
3	Effect of Sintering Aids on Microstructures and PTCR Characteristics of (Sr0.2Ba0.8)TiO3 Ceramics. Journal of the American Ceramic Society, 1993, 76, 827-832.	1.9	98
4	In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode. Nanoscale, 2013, 5, 1159.	2.8	80
5	Microstructure and Nonlinear Properties of Microwaveâ€Sintered ZnOâ€V ₂ O ₅ Varistors: I, Effect of V ₂ O ₅ Doping. Journal of the American Ceramic Society, 1998, 81, 2942-2948.	1.9	69
6	Self-organized multi-layered graphene–boron-doped diamond hybrid nanowalls for high-performance electron emission devices. Nanoscale, 2018, 10, 1345-1355.	2.8	57
7	Electron field emission properties of pulsed laser deposited carbon films containing carbon nanotubes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1034.	1.6	54
8	Far-infrared, Raman spectroscopy, and microwave dielectric properties of La(Mg0.5Ti(0.5â^'x)Snx)O3 ceramics. Journal of Applied Physics, 2007, 102, 064906.	1.1	48
9	Improvement of (Pb1â^'xLax)(ZryTi1â^'y)1â^'x/4O3 ferroelectric thin films by use of SrRuO3/Ru/Pt/Ti bottom electrodes. Applied Physics Letters, 1998, 72, 1182-1184.	1.5	47
10	Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3–(1â^'x)Ba(Mg1/3Nb2/3)O3 ceramics: II. Infrared spectroscopy. Journal of Applied Physics, 2003, 94, 3365-3370.	1.1	44
11	Defect structure and electron field-emission properties of boron-doped diamond films. Applied Physics Letters, 1999, 75, 2857-2859.	1.5	41
12	Modification on the electron field emission properties of diamond films: The effect of bias voltage applied in situ. Journal of Applied Physics, 1998, 84, 3890-3894.	1.1	40
13	Effect of boron doping on the electron-field-emission properties of nanodiamond films. Journal of Applied Physics, 2005, 97, 054310.	1.1	40
14	An amperometric urea bisosensor based on covalent immobilization of urease on N2 incorporated diamond nanowire electrode. Biosensors and Bioelectronics, 2014, 56, 64-70.	5.3	39
15	Pyroelectric properties of (Pb1â^'xLax)TiO3 thin films deposited using SrRuO3 as a buffer layer. Applied Physics Letters, 1998, 72, 3285-3287.	1.5	38
16	Effects of high energy Au-ion irradiation on the microstructure of diamond films. Journal of Applied Physics, 2013, 113, 113704.	1.1	38
17	Origin of platelike granular structure for the ultrananocrystalline diamond films synthesized in H2-containing Ar/CH4 plasma. Journal of Applied Physics, 2010, 107, .	1.1	37
18	Structural and electronic properties of nitrogen ion implanted ultra nanocrystalline diamond surfaces. Journal of Applied Physics, 2011, 110, 044304.	1.1	37

#	Article	IF	CITATIONS
19	Improvement in Tribological Properties by Modification of Grain Boundary and Microstructure of Ultrananocrystalline Diamond Films. ACS Applied Materials & Interfaces, 2013, 5, 3614-3624.	4.0	37
20	Ferroelectric properties of (Pb0.97La0.03)(Zr0.66Ti0.34)0.9875O3 films deposited on Si3N4-coated Si substrates by pulsed laser deposition process. Applied Physics Letters, 1997, 70, 46-48.	1.5	36
21	Structural and Electrical Properties of Conducting Diamond Nanowires. ACS Applied Materials & Interfaces, 2013, 5, 1294-1301.	4.0	36
22	3D Hierarchical Boron-Doped Diamond-Multilayered Graphene Nanowalls as an Efficient Supercapacitor Electrode. Journal of Physical Chemistry C, 2019, 123, 15458-15466.	1.5	35
23	Microstructure and Nonlinear Properties of Microwave‣intered ZnOâ€V ₂ O ₅ Varistors: II, Effect of Mn ₃ O ₄ Doping. Journal of the American Ceramic Society, 1998, 81, 2949-2956.	1.9	34
24	Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation technique. Diamond and Related Materials, 2006, 15, 353-356.	1.8	34
25	Direct Observation and Mechanism for Enhanced Electron Emission in Hydrogen Plasma-Treated Diamond Nanowire Films. ACS Applied Materials & Interfaces, 2014, 6, 8531-8541.	4.0	34
26	Evolution of Microstructure and V-Shaped Positive Temperature Coefficient of Resistivity of (Pb0.6Sr0.4)TiO3 Materials. Journal of the American Ceramic Society, 1994, 77, 1340-1344.	1.9	33
27	Frequency response of microwave dielectric Bi2(Zn1/3Nb2/3)2O7 thin films laser deposited on indium–tin oxide coated glass. Journal of Applied Physics, 2000, 87, 479-483.	1.1	33
28	Nanocrystalline diamond microstructures from Ar/H2/CH4-plasma chemical vapour deposition. CrystEngComm, 2011, 13, 6082.	1.3	33
29	Effect of nitrogen doping on the electron field emission properties of chemical vapor deposited diamond films. Diamond and Related Materials, 2000, 9, 1591-1599.	1.8	32
30	Engineering the Interface Characteristics of Ultrananocrystalline Diamond Films Grown on Au-Coated Si Substrates. ACS Applied Materials & Amp; Interfaces, 2012, 4, 4169-4176.	4.0	32
31	Ellipsometric investigation of nitrogen doped diamond thin films grown in microwave CH4/H2/N2 plasma enhanced chemical vapor deposition. Applied Physics Letters, 2016, 108, .	1.5	32
32	Low-temperature growth of ZnO nanowires. Journal of Materials Research, 2003, 18, 714-718.	1.2	31
33	Tribological Properties of Ultrananocrystalline Diamond Films: Mechanochemical Transformation of Sliding Interfaces. Scientific Reports, 2018, 8, 283.	1.6	31
34	Modification of Piezoelectric Characteristics of the Pb(Mg,Nb)O3-PbZrO3-PbTiO3 Ternary System by Aliovalent Additives. Journal of the American Ceramic Society, 1995, 78, 178-182.	1.9	30
35	Effect of Y2O3/MgO Co-doping on the electrical properties of base-metal-electroded BaTiO3 materials. Journal of the European Ceramic Society, 2004, 24, 1479-1483.	2.8	30
36	Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film. Journal of Applied Physics, 2011, 109, .	1.1	29

#	Article	IF	CITATIONS
37	Electrophoresis of Nanodiamond on the Growth of Ultrananocrystalline Diamond Films on Silicon Nanowires and the Enhancement of the Electron Field Emission Properties. Journal of Physical Chemistry C, 2012, 116, 19867-19876.	1.5	29
38	On the enhancement of field emission performance of ultrananocrystalline diamond coated nanoemitters. Applied Physics Letters, 2007, 91, 063117.	1.5	27
39	Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance. Nanotechnology, 2007, 18, 435703.	1.3	27
40	Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films. Journal of Applied Physics, 2012, 111, .	1.1	26
41	Bias-Enhanced Nucleation and Growth Processes for Ultrananocrystalline Diamond Films in Ar/CH ₄ Plasma and Their Enhanced Plasma Illumination Properties. ACS Applied Materials & Interfaces, 2014, 6, 10566-10575.	4.0	26
42	Microplasma illumination enhancement of vertically aligned conducting ultrananocrystalline diamond nanorods. Nanoscale Research Letters, 2012, 7, 522.	3.1	24
43	Enhancement of the Stability of Electron Field Emission Behavior and the Related Microplasma Devices of Carbon Nanotubes by Coating Diamond Films. ACS Applied Materials & Interfaces, 2014, 6, 11589-11597.	4.0	24
44	Comparative measurements of the piezoelectric coefficient of a lead zirconate titanate film by piezoresponse force microscopy using electrically characterized tips. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena. 2003. 21. 916.	1.6	23
45	Freestanding Ultrananocrystalline Diamond Films with Homojunction Insulating Layer on Conducting Layer and Their High Electron Field Emission Properties. ACS Applied Materials & Interfaces, 2011, 3, 4007-4013.	4.0	23
46	Electron Field Emission Enhancement of Vertically Aligned Ultrananocrystalline Diamond oated ZnO Core–Shell Heterostructured Nanorods. Small, 2014, 10, 179-185.	5.2	23
47	Fast Photoresponse and Long Lifetime UV Photodetectors and Field Emitters Based on ZnO/Ultrananocrystalline Diamond Films. Chemistry - A European Journal, 2015, 21, 16017-16026.	1.7	23
48	Catalytically induced nanographitic phase by a platinum-ion implantation/annealing process to improve the field electron emission properties of ultrananocrystalline diamond films. Journal of Materials Chemistry C, 2015, 3, 2632-2641.	2.7	23
49	Superlubrication properties of ultra-nanocrystalline diamond film sliding against a zirconia ball. RSC Advances, 2015, 5, 100663-100673.	1.7	23
50	Single-step grown boron doped nanocrystalline diamond-carbon nanograss hybrid as an efficient supercapacitor electrode. Nanoscale, 2020, 12, 10117-10126.	2.8	23
51	Development of long lifetime cathode materials for microplasma application. RSC Advances, 2014, 4, 47865-47875.	1.7	22
52	The role of nanographitic phase on enhancing the electron field emission properties of hybrid granular structured diamond films: the electron energy loss spectroscopic studies. Journal Physics D: Applied Physics, 2014, 47, 415303.	1.3	22
53	Triboenvironment Dependent Chemical Modification of Sliding Interfaces in Ultrananocrystalline Diamond Nanowall Film: Correlation with Friction and Wear. Journal of Physical Chemistry C, 2018, 122, 945-956.	1.5	22
54	Effect of substrate materials on the electron field emission characteristics of chemical vapor deposited diamond films. Journal of Applied Physics, 1997, 82, 3310-3313.	1.1	21

#	Article	IF	CITATIONS
55	Pre-nucleation techniques for enhancing nucleation density and adhesion of low temperature deposited ultra-nanocrystalline diamond. Diamond and Related Materials, 2006, 15, 2046-2050.	1.8	21
56	Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond. Journal of Applied Physics, 2007, 101, 064308.	1.1	21
57	Diamond electron emission. MRS Bulletin, 2014, 39, 533-541.	1.7	21
58	Enhancement of the Electron Field Emission Properties of Ultrananocrystalline Diamond Films via Hydrogen Post-Treatment. ACS Applied Materials & Interfaces, 2014, 6, 14543-14551.	4.0	20
59	High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N ₂ -Plasma Grown Ultrananocrystalline Diamond Films. ACS Applied Materials & Interfaces, 2015, 7, 27526-27538.	4.0	20
60	Effects of Tungsten Metal Coatings on Enhancing the Characteristics of Ultrananocrystalline Diamond Films. Journal of Physical Chemistry C, 2008, 112, 3759-3765.	1.5	19
61	Synthesis of diamond using ultra-nanocrystalline diamonds as seeding layer and their electron field emission properties. Diamond and Related Materials, 2009, 18, 136-140.	1.8	19
62	Tribological properties of ultrananocrystalline diamond and diamond nanorod films. Surface and Coatings Technology, 2012, 207, 535-545.	2.2	19
63	Growth, structural and plasma illumination properties of nanocrystalline diamond-decorated graphene nanoflakes. RSC Advances, 2016, 6, 63178-63184.	1.7	19
64	Microwave cavity perturbation of nitrogen doped nano-crystalline diamond films. Carbon, 2019, 145, 740-750.	5.4	19
65	Field emission effects of nitrogenated carbon nanotubes on chlorination and oxidation. Journal of Applied Physics, 2008, 104, 063710.	1.1	18
66	Growth behavior of nanocrystalline diamond films on ultrananocrystalline diamond nuclei: The transmission electron microscopy studies. Journal of Applied Physics, 2009, 105, .	1.1	18
67	Effect of H2/Ar plasma on growth behavior of ultra-nanocrystalline diamond films: The TEM study. Diamond and Related Materials, 2010, 19, 138-142.	1.8	18
68	In vitro and in vivo evaluation of ultrananocrystalline diamond as an encapsulation layer for implantable microchips. Acta Biomaterialia, 2014, 10, 2187-2199.	4.1	18
69	Nanoscale investigation of enhanced electron field emission for silver ion implanted/post-annealed ultrananocrystalline diamond films. Scientific Reports, 2017, 7, 16325.	1.6	18
70	Tribological Properties of Ultrananocrystalline Diamond Films in Inert and Reactive Tribo-Atmospheres: XPS Depth-Resolved Chemical Analysis. Journal of Physical Chemistry C, 2018, 122, 8602-8613.	1.5	18
71	Microwave sintering Pb(Zr0.52Ti0.48)O3piezoelectric ceramics. Ferroelectrics, 2001, 262, 293-298.	0.3	17
72	Effect of N2 addition in Ar plasma on the development of microstructure of ultra-nanocrystalline diamond films. Diamond and Related Materials, 2010, 19, 147-152.	1.8	17

#	Article	IF	CITATIONS
73	Modification on the Microstructure of Ultrananocrystalline Diamond Films for Enhancing Their Electron Field Emission Properties via a Two-Step Microwave Plasma Enhanced Chemical Vapor Deposition Process. Journal of Physical Chemistry C, 2011, 115, 13894-13900.	1.5	17
74	Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid. Nanotechnology, 2017, 28, 065701.	1.3	17
75	Title is missing!. Journal of Materials Science, 2000, 35, 4841-4847.	1.7	16
76	Enhanced Electron Field Emission Properties of Conducting Ultrananocrystalline Diamond Films after Cu and Au Ion Implantation. ACS Applied Materials & Interfaces, 2014, 6, 4911-4919.	4.0	16
77	Origin of Conductive Nanocrystalline Diamond Nanoneedles for Optoelectronic Applications. ACS Applied Materials & Interfaces, 2019, 11, 25388-25398.	4.0	16
78	Conventional and microwave sintering studies of SrTiO ₃ . Journal of Materials Research, 1995, 10, 2052-2059.	1.2	15
79	Field-emission enhancement of Mo-tip field-emitted arrays fabricated by using a redox method. IEEE Electron Device Letters, 2000, 21, 560-562.	2.2	15
80	Heterogranular-Structured Diamond–Gold Nanohybrids: A New Long-Life Electronic Display Cathode. ACS Applied Materials & Interfaces, 2015, 7, 27078-27086.	4.0	15
81	Nitrogen Incorporated Ultrananocrystalline Diamond Microstructures From Biasâ€Enhanced Microwave N ₂ /CH ₄ â€Plasma Chemical Vapor Deposition. Plasma Processes and Polymers, 2016, 13, 419-428.	1.6	15
82	Phase transitions and critical phenomena of tiny grains carbon films synthesized in microwaveâ€based vapor deposition system. Surface and Interface Analysis, 2019, 51, 389-399.	0.8	15
83	Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature. Diamond and Related Materials, 2006, 15, 1779-1783.	1.8	14
84	On the mechanism of enhancing the nucleation behavior of UNCD films by Mo-coating. Diamond and Related Materials, 2010, 19, 134-137.	1.8	14
85	Using an Au interlayer to enhance electron field emission properties of ultrananocrystalline diamond films. Journal of Applied Physics, 2012, 112, 103711.	1.1	14
86	Enhancing the stability of microplasma device utilizing diamond coated carbon nanotubes as cathode materials. Applied Physics Letters, 2014, 104, .	1.5	14
87	Effective thermal and mechanical properties of polycrystalline diamond films. Journal of Applied Physics, 2018, 123, .	1.1	14
88	Formation of tiny particles and their extended shapes: origin of physics and chemistry of materials. Applied Nanoscience (Switzerland), 2019, 9, 1367-1382.	1.6	14
89	Highly Conductive Diamond–Graphite Nanohybrid Films with Enhanced Electron Field Emission and Microplasma Illumination Properties. ACS Applied Materials & Interfaces, 2015, 7, 14035-14042.	4.0	13
90	Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures. Scientific Reports, 2016, 6, 29444.	1.6	13

#	Article	IF	CITATIONS
91	Boron-Doped Nanocrystalline Diamond–Carbon Nanospike Hybrid Electron Emission Source. ACS Applied Materials & Interfaces, 2019, 11, 48612-48623.	4.0	13
92	Comparison on the effect of (La0.5Sr0.5)MnO3 and (La0.5Sr0.5)CoO3 buffer layers on fatigue properties of (Pb0.6Sr0.4)TiO3 thin films prepared by pulsed laser deposition. Journal of Applied Physics, 2000, 87, 8695-8699.	1.1	12
93	High-Performance Electron Field Emitters and Microplasma Cathodes Based on Conductive Hybrid Granular Structured Diamond Materials. ACS Applied Materials & Interfaces, 2017, 9, 4916-4925.	4.0	12
94	Straight imaging and mechanism behind grain boundary electron emission in Pt-doped ultrananocrystalline diamond films. Carbon, 2017, 111, 8-17.	5.4	12
95	Improvement on the degradation of microwave sintered ZnO varistors by postannealing. Journal of Materials Research, 1998, 13, 1560-1567.	1.2	11
96	Numerical indicator field emission display using carbon nanotubes as emitters. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1023.	1.6	11
97	Development of X7R Type Base-Metal-Electroded BaTiO3Capacitor Materials by Co-Doping of MgO/Y2O3Additives. Ferroelectrics, 2006, 332, 35-39.	0.3	11
98	Transparent ultrananocrystalline diamond films on quartz substrate. Diamond and Related Materials, 2008, 17, 476-480.	1.8	11
99	Enhancement in electron field emission in ultrananocrystalline and microcrystalline diamond films upon 100 MeV silver ion irradiation. Journal of Applied Physics, 2009, 105, 083707.	1.1	11
100	The "cascade effect―of nano/micro hierarchical structure: A new concept for designing the high photoactivity materials – An example for TiO2. Applied Catalysis B: Environmental, 2013, 142-143, 752-760.	10.8	11
101	Microstructure of X7R Type Base-Metal-Electroded BaTiO3 Capacitor Materials Co-Doped with MgO/Y2O3 Additives. Journal of Electroceramics, 2004, 13, 567-571.	0.8	10
102	Microwave Sintering of Base-Metal-Electroded BaTiO3 Capacitor Materials Co-Doped with MgO/Y2O3 Additives. Journal of Electroceramics, 2004, 13, 573-577.	0.8	10
103	Fabrication and field emission properties of ultra-nanocrystalline diamond lateral emitters. Diamond and Related Materials, 2008, 17, 776-781.	1.8	10
104	The induction of a graphite-like phase on diamond films by a Fe-coating/post-annealing process to improve their electron field emission properties. Journal of Applied Physics, 2011, 109, 084309.	1.1	10
105	Direct observation of enhanced emission sites in nitrogen implanted hybrid structured ultrananocrystalline diamond films. Journal of Applied Physics, 2013, 113, 054311.	1.1	10
106	Role of Carbon Nanotube Interlayer in Enhancing the Electron Field Emission Behavior of Ultrananocrystalline Diamond Coated Si-Tip Arrays. ACS Applied Materials & Interfaces, 2015, 7, 7732-7740.	4.0	10
107	Predictor Packing in Developing Unprecedented Shaped Colloidal Particles. Nano, 2018, 13, 1850109.	0.5	10
108	Electrical properties of the positive temperature coefficient of resistivity materials with 490 °C critical temperature. Journal of Applied Physics, 1998, 83, 1321-1326.	1.1	9

#	Article	IF	CITATIONS
109	(Pb1â^'xLax)(Zr1â^'yTiy)O3 patterns on Pt-coated silicon prepared by pulsed laser deposition process. Applied Physics Letters, 1999, 75, 2647-2649.	1.5	9
110	Preparation of PNN-PZT Thick Film on Pt/Ti/SiO2/Si Substrate by Laser Lift-Off Process. Integrated Ferroelectrics, 2005, 69, 135-141.	0.3	9
111	Effect of gigaelectron volt Au-ion irradiation on the characteristics of ultrananocrystalline diamond films. Journal of Applied Physics, 2010, 108, 123712.	1.1	9
112	Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films. Applied Physics Letters, 2014, 105, .	1.5	9
113	Hierarchical hexagonal boron nitride nanowall–diamond nanorod heterostructures with enhanced optoelectronic performance. RSC Advances, 2016, 6, 90338-90346.	1.7	9
114	Evolution of Granular Structure and the Enhancement of Electron Field Emission Properties of Nanocrystalline and Ultrananocrystalline Diamond Films Due to Plasma Treatment Process. ACS Applied Materials & Interfaces, 2018, 10, 28726-28735.	4.0	9
115	Direct synthesis of electrowettable nanostructured hybrid diamond. Journal of Materials Chemistry A, 2019, 7, 19026-19036.	5.2	9
116	Deposition of diamond films on SiO2surfaces using a high power microwave enhanced chemical vapor deposition process. Journal of Applied Physics, 1997, 81, 486-491.	1.1	8
117	Improvement on electron field emission properties of nanocrystalline diamond films by co-doping of boron and nitrogen. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1074.	1.6	8
118	Synthesis of diamond nanotips for enhancing the plasma illumination characteristics of capacitive-type plasma devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 02B109.	0.6	8
119	The potential application of ultra-nanocrystalline diamond films for heavy ion irradiation detection. AIP Advances, 2013, 3, .	0.6	8
120	Controlling morphology-structure of gold tiny particles, nanoparticles and particles at different pulse rates and pulse polarity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10, 025015.	0.7	8
121	Direct observation and mechanism of increased emission sites in Fe-coated microcrystalline diamond films. Journal of Applied Physics, 2012, 111, .	1.1	7
122	Bias enhanced nucleation and growth processes for improving the electron field emission properties of diamond films. Surface and Coatings Technology, 2013, 228, S175-S178.	2.2	7
123	Change of diamond film structure and morphology with N ₂ addition in MW PECVD apparatus with linear antenna delivery system. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2296-2301.	0.8	7
124	The microstructural evolution of ultrananocrystalline diamond films due to P ion implantation and annealing process-dosage effect. Diamond and Related Materials, 2015, 54, 47-54.	1.8	7
125	Plasma post-treatment process for enhancing electron field emission properties of ultrananocrystalline diamond films. Diamond and Related Materials, 2016, 63, 197-204.	1.8	7
126	Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties. Nanomaterials, 2018, 8, 653.	1.9	7

#	Article	IF	CITATIONS
127	Microstructural Effect on the Enhancement of Field Electron Emission Properties of Nanocrystalline Diamond Films by Li-Ion Implantation and Annealing Processes. ACS Omega, 2018, 3, 9956-9965.	1.6	7
128	Development of gold tiny particles and particles in different sizes at varying precursor concentration. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 015006.	0.7	7
129	Terahertz Response of Bulk Ba(Mg1/3Ta2/3)O3. Japanese Journal of Applied Physics, 2000, 39, 5642-5644.	0.8	6
130	Characteristics of carbon nanowires synthesized by local arc-discharging technique. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1040.	1.6	6
131	Baseâ€Metalâ€Electroded BaTiO ₃ Capacitor Materials with Duplex Microstructures. Journal of the American Ceramic Society, 2004, 87, 851-858.	1.9	6
132	Influence of Crystal Structure on the Fatigue Properties of Pb _{1â~<i>x</i>} La _{<i>x</i>} (Zr _{<i>y</i>â€2} ,) Tj ETQq0 0 0 rgBT /Overlock 10) Tf 50 542 1.9	2 Td (Ti
133	Ultra-Fine Ba2Ti9O20 Powders Synthesized by Inverse Microemulsion Processing and their Microwave Dielectric Properties. Journal of the American Ceramic Society, 2005, 88, 3405-3411.	1.9	6
134	Effect of SnO2 addition on the dielectric properties of Ba2Ti9O20 ceramics in the high-frequency regime. Journal of Applied Physics, 2006, 100, 094104.	1.1	6
135	Effect of Mo-buffer layer on the growth behavior and the electron field emission properties of UNCD films. Diamond and Related Materials, 2009, 18, 181-185.	1.8	6
136	Defect structure for the ultra-nanocrystalline diamond films synthesized in H2-containing Ar/CH4 plasma. Diamond and Related Materials, 2011, 20, 368-373.	1.8	6
137	The induction of a graphite-like phase by Fe-coating/post-annealing process to improve the electron field emission properties of ultrananocrystalline diamond films. Diamond and Related Materials, 2012, 24, 188-194.	1.8	6
138	Development of diamond cathode materials for enhancing the electron field emission and plasma characteristics using two-step microwave plasma enhanced chemical vapor deposition process. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 021202.	0.6	6
139	Synthesis of ultra-nano-carbon composite materials with extremely high conductivity by plasma post-treatment process of ultrananocrystalline diamond films. Applied Physics Letters, 2015, 107, .	1.5	6
140	Cold Nanostructures and Microstructures with Tunable Aspect Ratios for High-Speed Uni- and Multidirectional Photonic Applications. ACS Applied Nano Materials, 2020, 3, 9410-9424.	2.4	6
141	Ba(Zn1/3Nb2/3)O3ceramics synthesized by spray pyrolysis technique. Ferroelectrics, 1999, 231, 243-248.	0.3	5
142	Electrical properties of ZnO varistors prepared by microwave and conventional sintering process. Ferroelectrics, 1999, 231, 237-242.	0.3	5
143	Characteristics of ultra-nano-crystalline diamond films grown on the porous anodic alumina template. Diamond and Related Materials, 2006, 15, 324-328.	1.8	5
144	Field Emission Enhancement in Ion Implanted Ultraâ€nanocrystalline Diamond Films. Plasma Processes and Polymers, 2009, 6, S834.	1.6	5

#	Article	IF	CITATIONS
145	Anomalous Behavior of Loadâ€Dependent Friction on Ultraâ€Nanocrystalline Diamond Film. Advanced Engineering Materials, 2014, 16, 1098-1104.	1.6	5
146	Improvement of electron field emission properties of nanocrystalline diamond films by a plasma post-treatment process for cathode application in microplasma devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	5
147	Engineered design and fabrication of long lifetime multifunctional devices based on electrically conductive diamond ultrananowire multifinger integrated cathodes. Journal of Materials Chemistry C, 2016, 4, 9727-9737.	2.7	5
148	Laser-Patternable Graphene Field Emitters for Plasma Displays. Nanomaterials, 2019, 9, 1493.	1.9	5
149	High Tcpositive temperature coefficient resistivity (Pb0.6Sr0.3Ba0.1)TiO3materials prepared by microwave sintering. Ferroelectrics, 1997, 195, 65-68.	0.3	4
150	On the microwave sintering technique applied for enhancing the properties of PTC resistors and zno varistors. Ferroelectrics, 1999, 231, 159-168.	0.3	4
151	Improvement on microwave dielectric properties of Ba(Mgâ"Taâ")O3materials prepared via a two-step process. Ferroelectrics, 2000, 238, 81-89.	0.3	4
152	THZ transmission spectroscopy applied to dielectrics and microwave ceramics. Ferroelectrics, 2001, 254, 113-120.	0.3	4
153	Evidence of electron-emission-enhanced nucleation of diamonds in microwave plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2001, 79, 3257-3259.	1.5	4
154	Study on bias-enhanced nucleation of diamonds by simulating the time dependence of bias current. Journal of Applied Physics, 2002, 91, 3934-3936.	1.1	4
155	Effect of Y 2 O 3 Doping on the Electrical Properties of Base-Metal-Electroded Capacitor Materials. Ferroelectrics, 2002, 270, 135-140.	0.3	4
156	Electron field emission properties of carbon nanotubes grown on nickel caps. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1640.	1.6	4
157	Electron field emission properties of carbon nanotubes converted from nanodiamonds. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1688.	1.6	4
158	Study of Microwave Dielectric Properties of Perovskite Thin Films by Near-Field Microscopy. Journal of Electroceramics, 2004, 13, 261-265.	0.8	4
159	Pretreatment of Ni-carboxylates metal-organics for growing carbon nanotubes on silicon substrates. Diamond and Related Materials, 2004, 13, 1242-1248.	1.8	4
160	Electron field emission properties of carbon nanoflakes prepared by RF sputtering. Journal of Materials Science: Materials in Electronics, 2010, 21, 926-931.	1.1	4
161	N-ion implantation of microâ€nanocrystalline duplex structured diamond films for enhancing their electron field emission properties. Surface and Coatings Technology, 2013, 228, S331-S335.	2.2	4
162	On the role of graphite in ultrananocrystalline diamond films used for electron field emitter applications. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2223-2237.	0.8	4

#	Article	IF	CITATIONS
163	Microstructural Evolution of Nanocrystalline Diamond Films Due to CH ₄ /Ar/H ₂ Plasma Post-Treatment Process. ACS Applied Materials & Interfaces, 2015, 7, 21844-21851.	4.0	4
164	Hydrogenation of diamond nanowire surfaces for effective electrostatic charge storage. Nanoscale, 2021, 13, 7308-7321.	2.8	4
165	Single-step synthesis of core-shell diamond-graphite hybrid nano-needles as efficient supercapacitor electrode. Electrochimica Acta, 2021, 397, 139267.	2.6	4
166	Enhancing the densification process on Ba(Mg1/3Ta2/3)O3microwave dielectrics by Y2O3incorporation. Ferroelectrics, 1999, 231, 103-108.	0.3	3
167	Electrical and optical properties of microwave dielectric thin films prepared by pulsed laser deposition. Integrated Ferroelectrics, 2001, 32, 33-43.	0.3	3
168	Effect of catalyst on growth behavior of carbon nanotube synthesizing by microwave heating thermal chemical vapor deposition process. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1026.	1.6	3
169	Effect of catalyst on growth behavior of carbon nanotubes synthesized by microwave heating thermal chemical vapor deposition process. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 400.	1.6	3
170	Microwave Dielectric Mechanism Studied by Microwave Near-Field Microscopy and Raman Spectroscopy. Journal of Electroceramics, 2004, 13, 281-286.	0.8	3
171	Highly sensitive pH dependent acetone sensor based on ultrananocrystalline diamond materials at room temperature. RSC Advances, 2016, 6, 102821-102830.	1.7	3
172	Interfacial effects in ZnO nanotubes/needle-structured graphitic diamond nanohybrid for detecting dissolved acetone at room temperature. Applied Surface Science, 2017, 426, 630-638.	3.1	3
173	Forces driving amalgamation of nanoparticles and particles in solution. Forces in Mechanics, 2022, 7, 100076.	1.3	3
174	Effect of oxygen pressure on microstructure, texture and growth characteristics of laser ablated BaTiO3 thin films. Integrated Ferroelectrics, 1995, 10, 81-88.	0.3	2
175	Microstructural characteristics of microwave-sintered semi-conductive Pb0.6Sr0.4Tio3ceramics. Ferroelectrics, 1999, 231, 37-42.	0.3	2
176	Preparation of PZT ferroelectric thick films by nanopowder-metal-organic decomposition process. Integrated Ferroelectrics, 2000, 30, 213-224.	0.3	2
177	Improvement on ferroelectric properties of metal-organic decomposited PZT thin film prepared by using prenucleation layer. Integrated Ferroelectrics, 2000, 30, 157-164.	0.3	2
178	Crystalline and optical properties of PLZT films prepared by pulsed laser deposition. Integrated Ferroelectrics, 2000, 31, 69-75.	0.3	2
179	Ferroelectric Properties of Pb(Zr 1â^'x Ti x)O 3 Graded Thin Films. Ferroelectrics, 2002, 271, 235-240.	0.3	2
180	Pretreatment of Fe(C7H15COO)3 metal-organics for growing carbon nanotubes on silicon substrates. Diamond and Related Materials, 2003, 12, 283-289.	1.8	2

#	Article	IF	CITATIONS
181	Low Temperature Preparation of Pb(Zr0.52Ti0.48)O3Thin Films Using Pulsed Excimer Laser Annealing Process. Ferroelectrics, 2005, 328, 33-40.	0.3	2
182	MICROWAVE PROPERTIES OF BST AND BST/BMT THIN FILMS GROWN ON SAPPHIRE SUBSTRATE BY EVANESCENT MICROWAVE PROBE. Integrated Ferroelectrics, 2005, 77, 45-50.	0.3	2
183	Fabrication of CNTs on Ni-cap electron emitters by using prenucleation technique. Diamond and Related Materials, 2005, 14, 758-762.	1.8	2
184	Microstructure evolution and the modification of the electron field emission properties of diamond films by gigaelectron volt Au-ion irradiation. AIP Advances, 2011, 1, .	0.6	2
185	Microstructure and friction behaviour in nanocrystalline diamond films. Philosophical Magazine, 2015, 95, 886-905.	0.7	2
186	Effect of excess-Pb on ferroelectric properties of Pb(Zr0.52Ti0.48)O3 thin films prepared by metal-organic decomposition process. Integrated Ferroelectrics, 1999, 25, 311-318.	0.3	1
187	Ferroelectric properties of (PbxLa1â^'x)(ZryTi1â^'y)O3 films prepared by two-step pulsed laser deposition process. Integrated Ferroelectrics, 1999, 26, 1-8.	0.3	1
188	Microstructural characteristics and nonequilibrium core-shell phase in (PbxSr1â^'x)TiO3materials and their electrical properties. Ferroelectrics, 2000, 241, 25-34.	0.3	1
189	Thermal stability in diamond-like carbon coated planar electron field emission arrays. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2424.	1.6	1
190	Microwave dielectric properties of Ba(Zn1/3Nb2/3)O3prepared by inverse-microemulsion process. Ferroelectrics, 2001, 262, 299-304.	0.3	1
191	Multi-Layer Ferroelectric Pb(Zr 0.52 Ti 0.48)O 3 Thick Films Prepared by Pulsed Laser Deposition. Integrated Ferroelectrics, 2002, 46, 17-26.	0.3	1
192	Positive Temperature Coefficient Properties of (Sr 0.2 Ba 0.8)TiO 3 Prepared by Microwave Sintering Technique. Ferroelectrics, 2002, 270, 21-26.	0.3	1
193	Pulsed Laser Deposited Ba(Mg1/3Ta2/3)O3 Microwave Dielectric Thin Films. Integrated Ferroelectrics, 2003, 55, 915-922.	0.3	1
194	Preparation of Textured Growth Pb(Zr,Ti)O3 Thin Films on Si Substrate Using SrTiO3 as Buffer Layers. Integrated Ferroelectrics, 2003, 57, 1257-1264.	0.3	1
195	Characteristics of Pb(Zr, Ti)O3 Thin Films Deposited on Pt(Si) at Low Substrate Temperature by Using Ba(Mg1/3Ta2/3)O3 as Buffer Layer. Integrated Ferroelectrics, 2004, 67, 3-12.	0.3	1
196	On the preparation of Ni-carboxylates catalysts for growing single walled carbon nanotubes. Diamond and Related Materials, 2005, 14, 774-777.	1.8	1
197	Selective area growth of carbon nanostructure synthesized by catalyst-assisted conversion of nanodiamond films. Diamond and Related Materials, 2005, 14, 825-830.	1.8	1
198	Characteristic of Ba2Ti9O2OMicrowave Dielectric Materials Prepared by Modified Co-Precipitation Method. Ferroelectrics, 2006, 332, 131-138.	0.3	1

#	Article	IF	CITATIONS
199	PREPARATION OF HIGHLY TEXTURED ALN FILMS USING MO AND TI ELECTRODE FOR INTEGRATED ALN-BASED FILM BULK ACOUSTIC WAVE RESONATORS. Integrated Ferroelectrics, 2006, 80, 407-413.	0.3	1
200	Modification of ultrananocrystalline diamond film microstructure via Fe-coating and annealing for enhancement of electron field emission properties. Journal of Applied Physics, 2012, 112, 033708.	1.1	1
201	The 3D-tomography of the nano-clusters formed by Fe-coating and annealing of diamond films for enhancing their surface electron field emitters. AIP Advances, 2012, 2, 032153.	0.6	1
202	The role of nano-graphite phase on enhancing the plasma illumination characteristics of the diamond-coated inverted pyramidal cavities. Thin Solid Films, 2013, 529, 147-152.	0.8	1
203	On the role of graphite in ultrananocrystalline diamond films used for electron field emitter applications (Phys. Status Solidi A 10â^•2014). Physica Status Solidi (A) Applications and Materials Science, 2014, 211, n/a-n/a.	0.8	1
204	Enhancement of plasma illumination characteristics via typical engineering of diamond–graphite nanocomposite films. CrystEngComm, 2016, 18, 1800-1808.	1.3	1
205	Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods. MRS Communications, 2018, 8, 1311-1320.	0.8	1
206	Electron Field Emission Enhancement of Vertically Aligned Ultrananocrystalline Diamond-Coated ZnO Core–Shell Heterostructured Nanorods. , 2014, 10, 179.		1
207	Laser ablated pyroelectric thin films for room temperature IR sensors. , 0, , .		0
208	The growth behavior of Pb-containing perovskite thin films using pulsed laser deposition technique. , 0, , .		0
209	Enhanced densification of SrTiO/sub 3/ perovskite ceramics. , 0, , .		0
210	Selected-area deposition of diamond films on SiN/Si surfaces with microwave plasma enhanced CVD. , 0, , .		0
211	Deposition of diamond films on SiO/sub 2/ surface using high power microwave enhanced chemical vapor deposition process. , 0, , .		0
212	MIM and MIS electret response of laser deposited Sr/sub x/Ba/sub 1-x/Nb/sub 2/O/sub 6/ thin films. , 0, , .		0
213	DC bias effect on the synthesis of [001] textured diamond films on silicon. , 0, , .		0
214	Growth behavior of LaNiO/sub 3/ and their effect on the pulsed laser deposited PLZT films. , 0, , .		0
215	Influence of SrTiO/sub 3/ or Pt buffer layer on the formation of perovskite phase Pb/sub 1-x/La/sub x/(Zr/sub y/Ti/sub 1-y/)/sub 1-x/4/O/sub 3/ films prepared by pulsed laser deposition. , 0, , .		0
216	Improvement on ferroelectric properties of (Pb1-xLax)(ZryTi1-y)1-x/4O3 thin films by using metallic Ru as intermediate layers. Integrated Ferroelectrics, 1998, 21, 63-71.	0.3	0

#	Article	IF	CITATIONS
217	Effect of substrate temperature on ferroelectric properties of (Pb1â^'xLax)Ti1â^'x/4O3/SrRuO3thin films. Ferroelectrics, 1999, 232, 111-116.	0.3	0
218	Characterization of Ba(Mg/sub 1/3/Ta/sub 2/3/)O/sub 3/ and Bi/sub 2/(Zn/sub 1/3/Nb/sub 2/3/)/sub 2/O/sub 7/ microwave dielectrics in optical and microwave frequency regions. , 0, , .		0
219	Effect of excess-PB and prenucleation layer on properties of Pb(ZryTi1-y)O3 thin films prepared by mod process. Integrated Ferroelectrics, 2000, 30, 203-212.	0.3	0
220	Formation and properties of lead Titanate thick films prepared by nanopowder-metal-organic decomposition process. Integrated Ferroelectrics, 2000, 30, 61-70.	0.3	0
221	Properties of thick PZT films prepared by modified metal organic decomposition process. Ferroelectrics, 2001, 260, 243-248.	0.3	0
222	Powder preparation and sintering process on core-shell structures of Pb0.6Sr0.4TiO3materials. Ferroelectrics, 2001, 263, 279-284.	0.3	0
223	On the nano-power incorporated metal-organic decomposition process for the synthesis of Pb-based ferroelectric thick films. Ferroelectrics, 2001, 260, 237-242.	0.3	0
224	Thick Pb(Ni 1/3 Nb 2/3)O 3 -(Pb 1â^'x)(Ti 1â^'y Zr y)O 3 Films Prepared by Tape-Casting. Integrated Ferroelectrics, 2002, 46, 3-15.	0.3	0
225	Design of Multilayer Microwave Devices by Coupling Matrix Algorithm for LTCC Process. Integrated Ferroelectrics, 2002, 49, 73-82.	0.3	0
226	Properties of PZT Nano-Powder Doped Silica Films Prepared by Sol-Gel Process. Integrated Ferroelectrics, 2002, 50, 251-260.	0.3	0
227	Terahertz and Infrared Spectroscopic Study on Dielectric Properties of Bi 2 (Zn 1/3 Nb 2/3) 2 O 7 for Microwave Application. Ferroelectrics, 2002, 272, 255-260.	0.3	0
228	Ferroelectric Properties of Pb(Zr1 â^' x,Tix)O3 Prepared by Modified Metallo-Organic-Decomposition Process. Integrated Ferroelectrics, 2003, 52, 11-18.	0.3	0
229	Pulsed Laser Deposited Ba(Mg1/3Ta2/3)O3 Microwave Dielectric Thin Films. Integrated Ferroelectrics, 2003, 55, 887-894.	0.3	0
230	SYNTHESIS OF NANOSTRUCTURE CARBONACEOUS MATERIALS ON TIP USING PLASMA-CHEMICAL-VAPOR-DEPOSITION METHOD. International Journal of Nanoscience, 2003, 02, 231-237.	0.4	0
231	Low Temperature Synthesis of AlN Films by ICP-Assisted Metalorganic Chemical Vapor Deposition Method. Integrated Ferroelectrics, 2004, 68, 95-103.	0.3	0
232	Growth Behavior of (Pr2/3Ca1/3)MnO3 Layer and the Buffering Effect on Pb(Zr, Ti)O3 Thin Films. Integrated Ferroelectrics, 2004, 67, 31-40.	0.3	0
233	ENHANCEMENT ON CRYSTALLIZATION KINETICS OF Pb(Zr1 - xTix)O3 THIN FILMS PREPARED BY METAL-ORGANIC DECOMPOSITION PROCESS BY THE INCORPORATION OF NANO-POWDERS. Integrated Ferroelectrics, 2005, 75, 69-79.	0.3	0
234	Microwave Dielectric Properties of Ba2Ti9O20Materials Prepared by Reaction Sintering Process. Ferroelectrics, 2006, 332, 139-146.	0.3	0

#	Article	IF	CITATIONS
235	Effect of SnO2 on improvement on the microwave dielectric properties of Ba2Ti9O20. Journal of Electroceramics, 2007, 18, 167-173.	0.8	0
236	Characteristics of Optical Emission Spectra Induced by Laser Beams and Crystallization of PBZNZT Thin Films. Plasma Processes and Polymers, 2009, 6, S817-S821.	1.6	0
237	The synthesis of diamond nano-tips for enhancing the plasma illumination characteristics of the capacitive type plasma devices. , 2012, , .		0
238	Fabrication of nitrogen-doped ultrananocrystalline diamond nanowire arrays with enhanced field emission and plasma illumination performance. , 2012, , .		0
239	STM observation of surface transfer doping mechanism in 3 keV nitrogen ion implanted UNCD films. , 2013, , .		0
240	Development of microplasma based UV sources using diamond nanostructured cathodes. , 2014, , .		0
241	Enhancement on the stability of electron field emission behavior of carbon nanotubes by coating ultrananocrystalline diamond films. , 2014, , .		Ο
242	The enhancement of the electron field emission behavior of diamond/CNTs materials via the plasma post-treatment process for the applications in triode-type vacuum field emission transistor. , 2016, , .		0
243	DEVELOPMENT OF MICROWAVE DIELECTRIC THIN FILMS. , 2001, , .		Ο
244	Investigation of the spectral characteristics of silicon-vacancy centers in ultrananocrystalline diamond nanostructures and single crystalline diamond. Journal of Applied Physics, 2020, 127, 035302.	1.1	0
245	Laser ablated pyroelectric thin films for room temperature IR sensors. , 0, , .		0