Xiaowu Shirley Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7053554/publications.pdf

Version: 2024-02-01

27 papers 3,145 citations

16 h-index 27 g-index

27 all docs

27 docs citations

27 times ranked

5189 citing authors

#	Article	IF	CITATIONS
1	Development of a Hybrid Nanoink for 3D Bioprinting of Heterogeneous Tumor Models. ACS Biomaterials Science and Engineering, 2022, 8, 777-785.	5.2	12
2	Embedded 3D Printing of Ultrasoundâ€Compatible Arterial Phantoms with Biomimetic Elasticity. Advanced Functional Materials, 2022, 32, .	14.9	15
3	Understanding Carbon Nanotubeâ€Based Ionic Diodes: Design and Mechanism. Small, 2021, 17, e2100383.	10.0	15
4	Sensitive, Stretchable, and Sustainable Conductive Cellulose Nanocrystal Composite for Human Motion Detection. ACS Sustainable Chemistry and Engineering, 2021, 9, 17351-17361.	6.7	16
5	Towards a transdermal membrane biosensor for the detection of lactate in body fluids. Sensors and Actuators B: Chemical, 2020, 308, 127645.	7.8	17
6	3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink. Scientific Reports, 2020, 10, 20648.	3.3	62
7	Ionotronics Based on Horizontally Aligned Carbon Nanotubes. Advanced Functional Materials, 2020, 30, 2003177.	14.9	33
8	Drug Delivery Systems Using Surface Markers for Targeting Cancer Stem Cells. Current Pharmaceutical Design, 2020, 26, 2057-2071.	1.9	6
9	Nanoparticle-Based Hybrid Scaffolds for Deciphering the Role of Multimodal Cues in Cardiac Tissue Engineering. ACS Nano, 2019, 13, 12525-12539.	14.6	101
10	Pressureâ€Driven Solvent Transport and Complex Ion Permeation through Graphene Oxide Membranes. Advanced Materials Interfaces, 2019, 6, 1802056.	3.7	2
11	Electrochemical methods for probing DNA damage mechanisms and designing cisplatin-based combination chemotherapy. BioTechniques, 2019, 66, 135-142.	1.8	5
12	Towards label-free, wash-free and quantitative B-type natriuretic peptide detection for heart failure diagnosis. Nanoscale, 2019, 11, 18347-18357.	5.6	10
13	Detection of Individual Molecules and Ions by Carbon Nanotubeâ€Based Differential Resistive Pulse Sensor. Small, 2018, 14, e1800013.	10.0	29
14	Reduced Graphene Oxideâ€GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. Small, 2016, 12, 3677-3689.	10.0	385
15	Highly Elastic and Conductive Humanâ€Based Protein Hybrid Hydrogels. Advanced Materials, 2016, 28, 40-49.	21.0	226
16	Aligned Carbon Nanotube–Based Flexible Gel Substrates for Engineering Biohybrid Tissue Actuators. Advanced Functional Materials, 2015, 25, 4486-4495.	14.9	146
17	Carbon Nanotube-Based Supercapacitors with Excellent ac Line Filtering and Rate Capability <i>via</i> lmproved Interfacial Impedance. ACS Nano, 2015, 9, 7248-7255.	14.6	202
18	Layerâ€byâ€Layer Assembly of 3D Tissue Constructs with Functionalized Graphene. Advanced Functional Materials, 2014, 24, 6136-6144.	14.9	151

#	Article	IF	CITATIONS
19	Controlling Mechanical Properties of Cellâ€Laden Hydrogels by Covalent Incorporation of Graphene Oxide. Small, 2014, 10, 514-523.	10.0	183
20	Carbon nanotube compared with carbon black: effects on bacterial survival against grazing by ciliates and antimicrobial treatments. Nanotoxicology, 2013, 7, 251-258.	3.0	12
21	Cell″aden Microengineered and Mechanically Tunable Hybrid Hydrogels of Gelatin and Graphene Oxide. Advanced Materials, 2013, 25, 6385-6391.	21.0	266
22	Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano, 2013, 7, 2369-2380.	14.6	789
23	Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation. ACS Nano, 2012, 6, 362-372.	14.6	400
24	Carbon Nanotube Thin Film Biosensors for Sensitive and Reproducible Whole Virus Detection. Theranostics, 2012, 2, 251-257.	10.0	38
25	Transferable Thin Films of Pristine Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11, 3265-3272.	0.9	5
26	Interactions between Single-Walled Carbon Nanotubes (SWNT) and Ciliates: SWNT Interfere with Ciliate Ecological Functions and Ciliates Transport/Transform SWNT. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	1
27	Carbon nanotubes inhibit the hemolytic activity of the pore-forming toxin pyolysin. Nano Research, 2009, 2, 517-525.	10.4	18