
Liu Laqun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7053045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a fusion-oriented pulsed power module. Physical Review Accelerators and Beams, 2019, 22, .	1.6	20
2	Rescaling of microwave breakdown theory for monatomic gases by particle-in-cell/Monte Carlo simulations. Physics of Plasmas, 2013, 20, 122102.	1.9	19
3	Effects of rf magnetic field on upstream dielectric multipactor. Plasma Sources Science and Technology, 2018, 27, 125006.	3.1	16
4	Investigation on high inductive helical supported magnetically insulated transmission line on a 10-stage linear transformer driver system. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	15
5	Current Transmission Efficiency for Conical Magnetically Insulated Transmission Line on a 1.0-MV Linear Transformer Driver System. IEEE Transactions on Plasma Science, 2015, 43, 2663-2669.	1.3	14
6	Magnetically insulated theory with both electron and ion flows. Physics of Plasmas, 2012, 19, .	1.9	10
7	Application of energy-balance model from gas discharge to single-surface multipactor. Plasma Sources Science and Technology, 2020, 29, 125012.	3.1	7
8	The ionization rate under a general magnetic field for microwave breakdown. Physics of Plasmas, 2014, 21, 073508.	1.9	6
9	Theory of plasma propagation from microlayer discharges in vacuum window breakdown. Physics of Plasmas, 2018, 25, 010703.	1.9	6
10	Upstream and downstream multipactor of dielectric window by electromagnetic PIC simulations. Physics of Plasmas, 2018, 25, 062119.	1.9	5
11	Effects of microwave frequency on growth rate of upstream dielectric multipactor. Plasma Sources Science and Technology, 2020, 29, 037001.	3.1	5
12	Coaxial–Conical Transition in Magnetically Insulated Transmission Line. IEEE Transactions on Plasma Science, 2018, 46, 1913-1920.	1.3	4
13	Influence of magnetic shielding on electron dynamics characteristics of Penning ion source. AIP Advances, 2021, 11, .	1.3	4
14	PIC simulations of conical magnetically insulated transmission line with LTD generator: Transition from self-limited to load-limited flow. Physics of Plasmas, 2017, 24, .	1.9	3
15	PIC simulation of the anode plasma in a high-power hollow cathode diode. Physics of Plasmas, 2018, 25, 022502.	1.9	3
16	Study on the Correlation between Magnetic Field Structure and Cold Electron Transport in Negative Hydrogen Ion Sources. Applied Sciences (Switzerland), 2022, 12, 4104.	2.5	2
17	Global optimization methods to design vacuum electronic devices. , 2016, , .		1
18	PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system. AIP Advances, 2018, 8, 035112.	1.3	1

Liu Laqun

#	Article	IF	CITATIONS
19	Attenuation and Reflection of TEM and TE Microwaves Through a Dielectric With Multipactor. IEEE Transactions on Electron Devices, 2022, 69, 4598-4603.	3.0	1
20	Research on parallel algorithm of high-power microwave devices simulation based on MPI-3. AIP Advances, 2022, 12, 075313.	1.3	1
21	Large-scale parallel particle-in-cell code CHIPIC. , 2019, , .		0
22	Similarity of energy balance between single-surface multipactor and collisional gas discharge*. , 2021, , .		0
23	UPML Boundary Adapted to High- <i>Q</i> FDTD Algorithm and Its Application in High-Power Microwave Source With High- <i>Q</i> Value. IEEE Transactions on Plasma Science, 2022, 50, 2305-2314.	1.3	0