
Kurt R Brunden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7052469/publications.pdf Version: 2024-02-01

KIIDT P RDIINDEN

#	Article	IF	CITATIONS
1	Amyloid-β plaques enhance Alzheimer's brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nature Medicine, 2018, 24, 29-38.	30.7	433
2	Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nature Reviews Drug Discovery, 2009, 8, 783-793.	46.4	383
3	The Microtubule-Stabilizing Agent, Epothilone D, Reduces Axonal Dysfunction, Neurotoxicity, Cognitive Deficits, and Alzheimer-Like Pathology in an Interventional Study with Aged Tau Transgenic Mice. Journal of Neuroscience, 2012, 32, 3601-3611.	3.6	325
4	Epothilone D Improves Microtubule Density, Axonal Integrity, and Cognition in a Transgenic Mouse Model of Tauopathy. Journal of Neuroscience, 2010, 30, 13861-13866.	3.6	256
5	Chronic Stress Exacerbates Tau Pathology, Neurodegeneration, and Cognitive Performance through a Corticotropin-Releasing Factor Receptor-Dependent Mechanism in a Transgenic Mouse Model of Tauopathy. Journal of Neuroscience, 2011, 31, 14436-14449.	3.6	201
6	Intracerebral injection of preformed synthetic tau fibrils initiates widespread tauopathy and neuronal loss in the brains of tau transgenic mice. Neurobiology of Disease, 2015, 73, 83-95.	4.4	168
7	Microtubule Stabilizing Agents as Potential Treatment for Alzheimer's Disease and Related Neurodegenerative Tauopathies. Journal of Medicinal Chemistry, 2012, 55, 8979-8996.	6.4	151
8	The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer's disease and related tauopathies. Pharmacological Research, 2011, 63, 341-351.	7.1	135
9	Aminothienopyridazines and Methylene Blue Affect Tau Fibrillization via Cysteine Oxidation. Journal of Biological Chemistry, 2013, 288, 11024-11037.	3.4	128
10	Passive Immunization with Phospho-Tau Antibodies Reduces Tau Pathology and Functional Deficits in Two Distinct Mouse Tauopathy Models. PLoS ONE, 2015, 10, e0125614.	2.5	124
11	Evidence that Non-Fibrillar Tau Causes Pathology Linked to Neurodegeneration and Behavioral Impairments. Journal of Alzheimer's Disease, 2008, 14, 393-399.	2.6	106
12	Identification of Aminothienopyridazine Inhibitors of Tau Assembly by Quantitative High-Throughput Screening. Biochemistry, 2009, 48, 7732-7745.	2.5	101
13	Developing Therapeutic Approaches to Tau, Selected Kinases, and Related Neuronal Protein Targets. Cold Spring Harbor Perspectives in Medicine, 2011, 1, a006437-a006437.	6.2	101
14	Therapeutic strategies for the treatment of tauopathies: Hopes and challenges. Alzheimer's and Dementia, 2016, 12, 1051-1065.	0.8	91
15	Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorganic and Medicinal Chemistry, 2014, 22, 5040-5049.	3.0	87
16	Brain-Penetrant, Orally Bioavailable Microtubule-Stabilizing Small Molecules Are Potential Candidate Therapeutics for Alzheimer's Disease and Related Tauopathies. Journal of Medicinal Chemistry, 2014, 57, 6116-6127.	6.4	84
17	Tau-directed drug discovery for Alzheimer's disease and related tauopathies: A focus on tau assembly inhibitors. Experimental Neurology, 2010, 223, 304-310.	4.1	81
18	Altered microtubule dynamics in neurodegenerative disease: Therapeutic potential of microtubule-stabilizing drugs. Neurobiology of Disease, 2017, 105, 328-335.	4.4	74

Kurt R Brunden

#	Article	IF	CITATIONS
19	1,2,4-Triazolo[1,5-a]pyrimidines in drug design. European Journal of Medicinal Chemistry, 2019, 165, 332-346.	5.5	68
20	The Dynamics and Turnover of Tau Aggregates in Cultured Cells. Journal of Biological Chemistry, 2016, 291, 13175-13193.	3.4	59
21	Characterization of Brain-Penetrant Pyrimidine-Containing Molecules with Differential Microtubule-Stabilizing Activities Developed as Potential Therapeutic Agents for Alzheimers Disease and Related Tauopathies. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 432-450.	2.5	58
22	Identification of Novel and Improved Antimitotic Agents Derived from Noscapine. Journal of Medicinal Chemistry, 2005, 48, 7096-7098.	6.4	56
23	Discovery of Brain-Penetrant, Orally Bioavailable Aminothienopyridazine Inhibitors of Tau Aggregation. Journal of Medicinal Chemistry, 2010, 53, 3739-3747.	6.4	47
24	Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy. Acta Neuropathologica Communications, 2016, 4, 106.	5.2	45
25	Multitargeted Imidazoles: Potential Therapeutic Leads for Alzheimer's and Other Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2017, 60, 5120-5145.	6.4	40
26	Brain-penetrant microtubule-stabilizing compounds as potential therapeutic agents for tauopathies. Biochemical Society Transactions, 2012, 40, 661-666.	3.4	39
27	Inflammatory Eicosanoids Increase Amyloid Precursor Protein Expression via Activation of Multiple Neuronal Receptors. Scientific Reports, 2016, 5, 18286.	3.3	37
28	Characterization of tau binding by gosuranemab. Neurobiology of Disease, 2020, 146, 105120.	4.4	36
29	MT-Stabilizer, Dictyostatin, Exhibits Prolonged Brain Retention and Activity: Potential Therapeutic Implications. ACS Medicinal Chemistry Letters, 2013, 4, 886-889.	2.8	33
30	Evaluation of Oxetan-3-ol, Thietan-3-ol, and Derivatives Thereof as Bioisosteres of the Carboxylic Acid Functional Group. ACS Medicinal Chemistry Letters, 2017, 8, 864-868.	2.8	32
31	Pharmacokinetic, pharmacodynamic and metabolic characterization of a brain retentive microtubule (MT)-stabilizing triazolopyrimidine. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4980-4982.	2.2	31
32	Characterization of novel conformation-selective α-synuclein antibodies as potential immunotherapeutic agents for Parkinson's disease. Neurobiology of Disease, 2020, 136, 104712.	4.4	31
33	In vitro amplification of pathogenic tau conserves disease-specific bioactive characteristics. Acta Neuropathologica, 2021, 141, 193-215.	7.7	30
34	Aminothienopyridazine inhibitors of tau aggregation: Evaluation of structure–activity relationship leads to selection of candidates with desirable in vivo properties. Bioorganic and Medicinal Chemistry, 2012, 20, 4451-4461.	3.0	29
35	Distinct characteristics of limbic-predominant age-related TDP-43 encephalopathy in Lewy body disease. Acta Neuropathologica, 2022, 143, 15-31.	7.7	29
36	A brain-penetrant triazolopyrimidine enhances microtubule-stability, reduces axonal dysfunction and decreases tau pathology in a mouse tauopathy model. Molecular Neurodegeneration, 2018, 13, 59.	10.8	27

Kurt R Brunden

#	Article	IF	CITATIONS
37	Brain-Penetrant Tetrahydronaphthalene Thromboxane A2-Prostanoid (TP) Receptor Antagonists as Prototype Therapeutics for Alzheimer's Disease. ACS Chemical Neuroscience, 2012, 3, 928-940.	3.5	22
38	Design, synthesis and evaluation of photoactivatable derivatives of microtubule (MT)-active [1,2,4]triazolo[1,5-a]pyrimidines. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2180-2183.	2.2	21
39	Non-Naturally Occurring Small Molecule Microtubule-Stabilizing Agents: A Potential Tactic for CNS-Directed Therapies. ACS Chemical Neuroscience, 2017, 8, 5-7.	3.5	20
40	Brainâ€Penetrant Triazolopyrimidine and Phenylpyrimidine Microtubule Stabilizers as Potential Leads to Treat Human African Trypanosomiasis. ChemMedChem, 2018, 13, 1751-1754.	3.2	19
41	Conformation-selective tau monoclonal antibodies inhibit tau pathology in primary neurons and a mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 64.	10.8	19
42	Effects of microglial depletion and TREM2 deficiency on Aβ plaque burden and neuritic plaque tau pathology in 5XFAD mice. Acta Neuropathologica Communications, 2021, 9, 150.	5.2	19
43	Evaluation of the Structure–Activity Relationship of Microtubule-Targeting 1,2,4-Triazolo[1,5- <i>a</i>]pyrimidines Identifies New Candidates for Neurodegenerative Tauopathies. Journal of Medicinal Chemistry, 2021, 64, 1073-1102.	6.4	17
44	A model for improving the treatment and care of Alzheimer's disease patients through interdisciplinary research. , 2012, 8, 564-573.		16
45	Correction of microtubule defects within Aβ plaqueâ€associated dystrophic axons results in lowered Aβ release and plaque deposition. Alzheimer's and Dementia, 2020, 16, 1345-1357.	0.8	11
46	Compound screening in cell-based models of tau inclusion formation: Comparison of primary neuron and HEK293 cell assays. Journal of Biological Chemistry, 2020, 295, 4001-4013.	3.4	10
47	Potent, Long-Acting Cyclopentane-1,3-Dione Thromboxane (A ₂)-Receptor Antagonists. ACS Medicinal Chemistry Letters, 2014, 5, 1015-1020.	2.8	6
48	Congeners Derived from Microtubule-Active Phenylpyrimidines Produce a Potent and Long-Lasting Paralysis of <i>Schistosoma mansoni</i> In Vitro. ACS Infectious Diseases, 2021, 7, 1089-1103.	3.8	6
49	Microtubule-Stabilizing Agents for Alzheimer's and Other Tauopathies. Topics in Medicinal Chemistry, 2016, , 159-179.	0.8	5
50	O3-12-05: INTRACEREBRAL INJECTION OF PREFORMED SYNTHETIC TAU FIBRILS INITIATES WIDESPREAD TAUOPATHY AND NEURONAL LOSS IN THE BRAINS OF TAU TRANSGENIC MICE. , 2014, 10, P234-P234.		0
51	Alzheimer's Disease Drug Discovery in Academia: From High-Throughput Screening to In Vivo Testing. , 2022, , 34-44.		0