List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7052376/publications.pdf Version: 2024-02-01

		201385	315357
222	2,726	27	38
papers	citations	h-index	g-index
231	231	231	1482
all docs	docs citations	times ranked	citing authors

IENS TOMM

#	Article	IF	CITATIONS
1	Catastrophic Optical Damage in Semiconductor Lasers: Physics and New Results on InGaN Highâ€Power Diode Lasers. Physica Status Solidi - Rapid Research Letters, 2022, 16, 2100527.	1.2	5
2	Kinetics of excitation transfer from Cr2+ to Fe2+ ions in co-doped ZnSe. Optics Letters, 2022, 47, 2129-2132.	1.7	4
3	Stimulated emission at 1.54  μm from erbium/oxygen-doped silicon-based light-emitting diodes. Photo Research, 2021, 9, 714.	niçs 3.4	9
4	From Two- to Three-Dimensional Model of Heat Flow in Edge-Emitting Laser: Theory, Experiment and Numerical Tools. Energies, 2021, 14, 7006.	1.6	2
5	In-situ spectroscopic analysis of the recombination kinetics in UVB LEDs during their operation. Applied Physics Letters, 2020, 117, 121104.	1.5	9
6	Infrared emission bands and thermal effects for 440-nm-emitting GaN-based laser diodes. AIP Advances, 2020, 10, .	0.6	3
7	Ascending Si diffusion into growing GaN nanowires from the SiC/Si substrate: up to the solubility limit and beyond. Nanotechnology, 2020, 31, 294003.	1.3	3
8	Time-resolved photoluminescence from <i>n</i> -doped GaN/Al0.18Ga0.82N short-period superlattices probes carrier kinetics and long-term structural stability. Journal of Applied Physics, 2019, 125, .	1.1	5
9	<i>By-Emitter Analysis</i> of 450-nm Emitting High-Power Diode Laser Bars. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.	1.9	2
10	Dynamics of Broadband Lasing Cascade from a Single Dot-in-well InGaAs Microdisk. Scientific Reports, 2019, 9, 5635.	1.6	7
11	Impact of external optical feedback on high-power diode laser lifetime and failure modes. , 2019, , .		2
12	Origin of yellow emissions from (In,Ga,Al)N based 450â€nm emitting diode lasers. OSA Continuum, 2019, 2, 1496.	1.8	3
13	Visible and near-infrared emission images of (In,Ga,Al)N-based 450nm emitting-diode lasers. , 2019, , .		0
14	Emission Kinetics from PbSe Quantum Dots in Glass Matrix at High Excitation Levels. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800012.	1.2	1
15	Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers. Journal of Applied Physics, 2018, 123, .	1.1	10
16	Ultrafast carrier dynamics in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>GaNmathvariant="normal">N</mml:mi></mml:mrow> superlattice. Physical Review B, 2018, 97, .</mml:msub></mml:mrow></mml:math 	ım l:ı ni> <m< td=""><td>1178:mo>/</td></m<>	1178:mo>/
17	Catastrophic Optical Damage of GaN-Based Diode Lasers: Sequence of Events, Damage Pattern, and Comparison with GaAs-Based Devices. Journal of Electronic Materials, 2018, 47, 4959-4963.	1.0	3

18 Defect evolution during catastrophic optical damage in 450-nm emitting InGaN/GaN diode lasers. , 2018, , .

#	Article	IF	CITATIONS
19	Analysis of waveguide architectures of InGaN/GaN diode lasers by nearfield optical microscopy. Proceedings of SPIE, 2017, , .	0.8	Ο
20	Tailored bars at 976 nm for high-brightness fiber-coupled modules. , 2017, , .		1
21	Analysis of GaN based highâ€power diode lasers after singular degradation events. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700132.	1.2	10
22	The use of Fourier-transform photo-current spectroscopy for the analysis of aging properties of high power laser diode arrays. , 2017, , 471-474.		0
23	Near-field microscopy of waveguide architectures of InGaN/GaN diode lasers. Semiconductor Science and Technology, 2016, 31, 115015.	1.0	2
24	GaAs/GaP quantum dots: Ensemble of direct and indirect heterostructures with room temperature optical emission. Applied Physics Letters, 2016, 108, 102103.	1.5	3
25	Shortwave infrared (SWIR) emission from 450 nm InGaN diode lasers. Optical Materials Express, 2016, 6, 2139.	1.6	4
26	Transient surface modifications during singular heating events at diode laser facets. Semiconductor Science and Technology, 2016, 31, 055007.	1.0	5
27	Cathodoluminescence. Springer Series in Optical Sciences, 2016, , 213-263.	0.5	Ο
28	Photoluminescence (PL) Techniques. Springer Series in Optical Sciences, 2016, , 143-211.	0.5	3
29	Photoelectrical Spectroscopy. Springer Series in Optical Sciences, 2016, , 265-300.	0.5	0
30	Assessing the influence of the vertical epitaxial layer design on the lateral beam quality of high-power broad area diode lasers. Proceedings of SPIE, 2016, , .	0.8	5
31	Rapid stress-testing vs. long-term aging: a case study of 980-nm emitting single-spatial mode lasers. , 2016, , .		Ο
32	Reliability of high power laser diodes with external optical feedback. , 2016, , .		4
33	Temperature dependence of the fundamental excitonic resonance in lead-salt quantum dots. Applied Physics Letters, 2015, 107, .	1.5	9
34	Short-wavelength infrared defect emission as probe for degradation effects in diode lasers. , 2015, , .		1
35	Kinetics of catastrophic optical damage in GaN-based diode lasers. Semiconductor Science and Technology, 2015, 30, 072001.	1.0	16
36	High-power diode lasers under external optical feedback. Proceedings of SPIE, 2015, , .	0.8	11

#	Article	IF	CITATIONS
37	Analysis of 980nm emitting single-spatial mode diode lasers at high power levels by complementary imaging techniques. Proceedings of SPIE, 2015, , .	0.8	1
38	Ex post manipulation of barriers in InGaAs tunnel injection devices. Applied Physics Letters, 2015, 106, 013104.	1.5	2
39	Long-Term Aging and Quick Stress Testing of 980-nm Single-Spatial Mode Lasers. Journal of Lightwave Technology, 2015, 33, 4450-4456.	2.7	7
40	Experimental observation of exciton splitting and relaxation dynamics from PbS quantum dots in a glass matrix. Physical Review B, 2014, 89, .	1.1	6
41	Photoluminescence lineshape of ZnO. AIP Advances, 2014, 4, 123001.	0.6	9
42	Excess carrier generation in femtosecond-laser processed sulfur doped silicon by means of sub-bandgap illumination. Applied Physics Letters, 2014, 104, 042107.	1.5	24
43	Defect temperature kinetics during catastrophic optical damage in high power diode lasers. , 2014, , .		5
44	Internal degradation of 980nm emitting single-spatial-mode lasers during ultrahigh power operation. , 2014, , .		1
45	Short-wavelength infrared defect emission as a probe of degradation processes in 980 nm single-mode diode lasers. Laser and Photonics Reviews, 2014, 8, L59-L64.	4.4	7
46	Effect of nanobridges on the emission spectra of a quantum dot-quantum well tunneling pair. Semiconductors, 2014, 48, 1178-1184.	0.2	3
47	Nano-optical analysis of GaN-based diode lasers. Semiconductor Science and Technology, 2014, 29, 112001.	1.0	4
48	How does external feedback cause AlGaAs-based diode lasers to degrade?. Applied Physics Letters, 2013, 102, 023502.	1.5	24
49	Stimulated emission from PbSâ€quantum dots in glass matrix. Laser and Photonics Reviews, 2013, 7, L1.	4.4	11
50	Microscopic Origins of Catastrophic Optical Damage in Diode Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1500508-1500508.	1.9	28
51	PbS:Glass as broad-bandwidth near-infrared light source material. Optics Express, 2013, 21, 2287.	1.7	20
52	The impact of external optical feedback on the degradation behavior of high-power diode lasers. , 2013, , .		1
53	Spontaneous and stimulated emission dynamics of PbS quantum dots in a glass matrix. Physical Review B, 2013, 87, .	1.1	15
54	Surface InP/In0.48Ga0.52P quantum dots: Carrier recombination dynamics and their interaction with fluorescent dyes. Journal of Applied Physics, 2013, 114, 163510.	1.1	5

#	Article	IF	CITATIONS
55	Kinetics of Defect Propagation during the Catastrophic Optical Damage (COD) in Broad-Area Diode Lasers. Materials Science Forum, 2012, 725, 105-108.	0.3	5
56	The dielectric function of PbS quantum dots in a glass matrix. Optical Materials Express, 2012, 2, 496.	1.6	49
57	Effect of uniaxial stress on electroluminescence, valence band modification, optical gain, and polarization modes in tensile strainedp-AlGaAs/GaAsP/n-AlGaAs laser diode structures: Numerical calculations and experimental results. Journal of Applied Physics, 2012, 112, 093113.	1.1	13
58	Mechanisms and kinetics of the Catastrophic Optical Damage (COD) of high-power semiconductor lasers. , 2012, , .		1
59	Emulation of the operation and degradation of high-power laser bars using simulation tools. Semiconductor Science and Technology, 2012, 27, 094012.	1.0	8
60	High single-spatial-mode pulsed power from 980 nm emitting diode lasers. Applied Physics Letters, 2012, 101, .	1.5	15
61	Light-emitting tunneling nanostructures based on quantum dots in a Si and GaAs matrix. Semiconductors, 2012, 46, 1460-1470.	0.2	9
62	Catastrophic optical bulk damage in InP 7xx emitting quantum dot diode lasers. Semiconductor Science and Technology, 2012, 27, 102001.	1.0	3
63	Spectroscopic analysis of packaging concepts for high-power diode laser bars. Applied Physics A: Materials Science and Processing, 2012, 107, 371-377.	1.1	11
64	Near-field dynamics of broad area diode laser at very high pump levels. AIP Advances, 2011, 1, .	0.6	16
65	Defect evolution during catastrophic optical damage of diode lasers. Semiconductor Science and Technology, 2011, 26, 075020.	1.0	34
66	Catastrophic Optical Damage at Front and Rear Facets of 975 nm Emitting Diode Lasers. , 2011, , .		0
67	Tunnel injection emitter structures with barriers comprising nanobridges. Physica Status Solidi - Rapid Research Letters, 2011, 5, 385-387.	1.2	5
68	Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAsâ€based diode lasers. Laser and Photonics Reviews, 2011, 5, 422-441.	4.4	75
69	The impact of temperature and strain-induced band gap variations on current competition and emitter power in laser bars. Applied Physics Letters, 2011, 98, .	1.5	14
70	Two-dimensional carrier density distribution inside a high power tapered laser diode. Applied Physics Letters, 2011, 98, 221110.	1.5	3
71	Emission properties of diode laser bars during pulsed high-power operation. Semiconductor Science and Technology, 2011, 26, 092001.	1.0	3
72	Sequence of Events During the Catastrophic Optical Damage in Broad-Area Lasers. , 2011, , .		1

#	Article	IF	CITATIONS
73	InGaAs tunnel-injection structures with nanobridges: Excitation transfer and luminescence kinetics. Semiconductors, 2010, 44, 1050-1058.	0.2	5
74	lmaging Catastrophic Optical Mirror Damage in High-Power Diode Lasers. Journal of Electronic Materials, 2010, 39, 709-714.	1.0	9
75	Defect Imaging in Laser Diodes by Mapping Their Near-Infrared Emission. Journal of Electronic Materials, 2010, 39, 723-726.	1.0	0
76	Temperature dependent luminescence from quantum dot arrays: phonon-assisted line broadening versus carrier escape-induced narrowing. Physica Status Solidi (B): Basic Research, 2010, 247, 347-352.	0.7	8
77	Extrinsic contributions to photocurrents from quantum-wells. Journal of Applied Physics, 2010, 108, 013103.	1.1	2
78	Physical limits of semiconductor laser operation: A time-resolved analysis of catastrophic optical damage. Applied Physics Letters, 2010, 97, .	1.5	29
79	Time resolved studies of catastrophic optical mirror damage in red-emitting laser diodes. Journal of Applied Physics, 2010, 107, 123116.	1.1	14
80	Time-resolved analysis of catastrophic optical damage in 975 nm emitting diode lasers. Applied Physics Letters, 2010, 96, 251105.	1.5	18
81	Catastrophic optical damage at front and rear facets of diode lasers. Applied Physics Letters, 2010, 97, 231101.	1.5	29
82	Catastrophic optical mirror damage in diode lasers monitored during single pulse operation. , 2010, , .		0
83	COD monitoring of diode lasers. , 2010, , .		0
84	Microthermography of diode lasers: The impact of light propagation on image formation. Journal of Applied Physics, 2009, 105, 014502.	1.1	16
85	Catastrophic optical mirror damage of high power diode lasers. , 2009, , .		1
86	Mounting-induced strains in red-emitting (Al)InGaP laser diodes tuned by pressure. Applied Physics A: Materials Science and Processing, 2009, 97, 179-184.	1.1	5
87	Gradual degradation of GaAsâ€based quantum well lasers, creation of defects, and generation of compressive strain. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1912-1915.	0.8	11
88	Catastrophic optical mirror damage in diode lasers monitored during single-pulse operation. Applied Physics Letters, 2009, 94, 191101.	1.5	37
89	New approaches towards the understanding of the catastrophic optical damage process in in-plane diode lasers. Proceedings of SPIE, 2009, , .	0.8	4
90	Defect investigation and temperature analysis of high-power AlGaInP laser diodes during catastrophic optical damage. Journal of Materials Science: Materials in Electronics, 2008, 19, 155-159.	1.1	8

#	Article	IF	CITATIONS
91	Identification of degradation mechanisms in high-power laser bars using by-emitter degradation studies. Journal of Materials Science: Materials in Electronics, 2008, 19, 145-149.	1.1	3
92	Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance. Journal of Materials Science: Materials in Electronics, 2008, 19, 150-154.	1.1	13
93	DRIP-XII Conference 2007. Journal of Materials Science: Materials in Electronics, 2008, 19, 1-3.	1.1	5
94	Title is missing!. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 147, 107.	1.7	0
95	Visualization of heat flows in high-power diode lasers by lock-in thermography. Applied Physics Letters, 2008, 92, 103513.	1.5	7
96	Surface recombination and facet heating in high-power diode lasers. Applied Physics Letters, 2008, 92, .	1.5	26
97	Real-time thermal imaging of catastrophic optical damage in red-emitting high-power diode lasers. Applied Physics Letters, 2008, 92, 103514.	1.5	27
98	Transient carrier transfer in tunnel injection structures. Applied Physics Letters, 2008, 93, 031105.	1.5	24
99	Infrared emission from the substrate of GaAs-based semiconductor lasers. Applied Physics Letters, 2008, 93, .	1.5	11
100	Cavity-enhanced thermal emission from semiconductor lasers. Journal of Applied Physics, 2008, 103, 104508.	1.1	14
101	Screening of high power laser diode bars in terms of stresses and thermal profiles. , 2008, , .		3
102	290-fs Passively Mode-Locked Semiconductor Disk Laser. , 2008, , .		0
103	All-optical analysis of carrier and spin relaxation in InGaAsâ^•GaAs saturable-absorber structures. Applied Physics Letters, 2007, 90, 102105.	1.5	2
104	Processing-induced strains at solder interfaces in extended semiconductor structures. Journal of Applied Physics, 2007, 101, 114512.	1.1	4
105	Degradation behavior and thermal properties of red (650 nm) high-power diode single emitters and laser bars. , 2007, , .		2
106	Gradual degradation of red-emitting high-power diode laser bars. Applied Physics Letters, 2007, 90, 171113.	1,5	7
107	Temperature-power dependence of catastrophic optical damage in AlGaInP laser diodes. Applied Physics Letters, 2007, 91, 041115.	1.5	26
108	Thermal properties of high power laser bars investigated by spatially resolved thermoreflectance spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 422-429.	0.8	7

#	Article	IF	CITATIONS
109	Resonances related to an array of InAs quantum dots and controlled by an external electric field. Semiconductors, 2007, 41, 197-204.	0.2	0
110	Spatially resolved and temperature dependent thermal tuning rates of high-power diode laser arrays. Applied Physics Letters, 2006, 88, 133510.	1.5	2
111	Transient thermal properties of high-power diode laser bars. Applied Physics Letters, 2006, 89, 263506.	1.5	42
112	Thermal properties and degradation behavior of red-emitting high-power diode lasers. Applied Physics Letters, 2006, 89, 181112.	1.5	16
113	Observation of deep level defects within the waveguide of red-emitting high-power diode lasers. Applied Physics Letters, 2006, 88, 133513.	1.5	19
114	Carrier dynamics in active-region materials for diode laser applications. , 2006, 6368, 123.		0
115	Strain relaxation and defect creation in diode laser bars. Materials Science in Semiconductor Processing, 2006, 9, 215-219.	1.9	1
116	Miniband-related 1.4–1.8Âμm luminescence of Ge/Si quantum dot superlattices. Nanoscale Research Letters, 2006, 1, 137-153.	3.1	36
117	A room-temperature continuous-wave operating midinfrared light emitting device. Journal of Applied Physics, 2006, 99, 114506.	1.1	7
118	Spectroscopic strain measurement methodology: Degree-of-polarization photoluminescence versus photocurrent spectroscopy. Applied Physics Letters, 2006, 88, 133504.	1.5	8
119	Optically pumped semiconductor disk laser with graded and step indices. Applied Physics Letters, 2006, 89, 151120.	1.5	12
120	Complementary thermoreflectance and micro-Raman analysis of facet temperatures of diode lasers. Applied Physics Letters, 2006, 89, 071104.	1.5	35
121	Tuning of the interdot resonance in stacked InAs quantum dot arrays by an external electric field. Journal of Applied Physics, 2006, 100, 083704.	1.1	7
122	Reliability screening of diode lasers by multispectral infrared imaging. Journal of Applied Physics, 2006, 99, 053101.	1.1	9
123	Thermal properties of high-power diode lasers investigated by microthermography. , 2005, , .		9
124	Mechanical strain and defect distributions in GaAs-based diode lasers monitored during operation. Applied Physics Letters, 2005, 86, 111908.	1.5	8
125	Midinfrared luminescence imaging and its application to the optimization of light-emitting diodes. Applied Physics Letters, 2005, 86, 041106.	1.5	7
126	Relaxation of packaging-induced strains in AlGaAs-based high-power diode laser arrays. Applied Physics Letters, 2005, 86, 101911.	1.5	6

#	Article	IF	CITATIONS
127	Carrier dynamics in laterally strain-modulated InGaAs quantum wells. Applied Physics Letters, 2005, 87, 262103.	1.5	3
128	Screening of high-power diode laser bars by optical scanning. Applied Physics Letters, 2005, 87, 211110.	1.5	3
129	Nonresonant tunneling carrier transfer in bilayer asymmetricInAsâ^•GaAsquantum dots. Physical Review B, 2005, 71, .	1.1	14
130	Deep level emission from high-power diode laser bars detected by multispectral infrared imaging. Applied Physics Letters, 2005, 87, 153503.	1.5	23
131	Analysis of thermal images from diode lasers: Temperature profiling and reliability screening. Applied Physics Letters, 2005, 86, 203503.	1.5	34
132	By-emitter degradation analysis of high-power laser bars. Journal of Applied Physics, 2005, 98, 063101.	1.1	16
133	Interdot carrier transfer in asymmetric bilayer InAsâ^•GaAs quantum dot structures. Applied Physics Letters, 2005, 86, 063102.	1.5	60
134	Electronic structure and optoelectronic properties of strained InAsSbâ^•GaSb multiple quantum wells. Applied Physics Letters, 2005, 87, 181911.	1.5	2
135	Electron-optical-phonon interaction in the In0.73Ga0.27As–AlAs intersubband laser. Applied Physics Letters, 2005, 87, 072104.	1.5	11
136	Properties of As+-implanted and annealed GaAs and InGaAs quantum wells: Structural and band-structure modifications. Journal of Applied Physics, 2004, 95, 1122-1126.	1.1	13
137	Spectroscopic method of strain analysis in semiconductor quantum-well devices. Journal of Applied Physics, 2004, 96, 4056-4065.	1.1	24
138	Device deformation during low-frequency pulsed operation of high-power diode bars. Applied Physics Letters, 2004, 84, 3525-3527.	1.5	18
139	Spectroscopic analysis of external stresses in semiconductor quantum-well materials. Materials Research Society Symposia Proceedings, 2004, 829, 280.	0.1	0
140	Spectroscopy of exciton states of InAs quantum molecules. Semiconductors, 2004, 38, 696-701.	0.2	1
141	Quantitative spectroscopic strain analysis of AlGaAs-based high-power diode laser devices. EPJ Applied Physics, 2004, 27, 461-464.	0.3	0
142	Transient spectroscopy of InAs quantum dot molecules. Applied Physics Letters, 2004, 85, 284-286.	1.5	20
143	Mid-infrared light sources at room temperature based on lead chalcogenides. , 2004, , .		1
144	Materials and structural design of a mid-infrared light-emitting device. , 2004, , .		2

IF # ARTICLE CITATIONS Simultaneous quantitative determination of strain and defect profiles within the active region along 145 high-power diode laser bars by micro-photocurrent mapping. EPJ Applied Physics, 2004, 27, 451-454. Optical properties and carrier dynamics of InP quantum dots embedded in GaP., 2004,,. 146 1 Transient thermal tuning properties of single emitters in actively cooled high-power cm-bar arrays. , 2004,,. Spatially resolved spectroscopic strain measurements on high-power laser diode bars. Journal of 148 1.1 27 Applied Physics, 2003, 93, 1354-1362. Facet temperature reduction by a current blocking layer at the front facets of high-power 149 1.1 61 InGaAs/AlĠaAs lasers. Journal of Applied Physics, 2003, 93, 1848-1850. InP quantum dots embedded in GaP:â€f Optical properties and carrier dynamics. Physical Review B, 2003, 67, 150 1.1 50 Transient luminescence of dense InAs/GaAs quantum dot arrays. Physical Review B, 2003, 67, . 1.1 Optimized annealing conditions identified by analysis of radiative recombination in dilute Ga(As,N). 152 1.5 17 Applied Physics Letters, 2003, 83, 1343-1345. Quantitative strain analysis in AlGaAs-based devices. Applied Physics Letters, 2003, 82, 4193-4195. 1.5 28 154 Analysis of heat flows and their impact on the reliability of high-power diode lasers., 2003, , . 8 Simultaneous quantification of strain and defects in high-power diode laser devices. Applied Physics 39 1.5 Letters, 2002, 81, 3269-3271. Nanoscopic measurements of surface recombination velocity and diffusion length in a semiconductor 156 1.5 17 quantum well. Applied Physics Letters, 2002, 81, 346-348. Uniformity tests of individual segments of interband cascade diode laser Nanostacks®. Journal of 1.1 Applied Physics, 2002, 92, 2729-2733. Minority-carrier kinetics in heavily doped GaAs:C studied by transient photoluminescence. Journal of 158 1.1 11 Applied Physics, 2002, 91, 5072-5078. <title>Diode laser testing by taking advantage of its photoelectric properties</title>., 2002, , . <title>Microreflectance inspection of diode laser front facets</title>., 2002, , . 160 1 Large optical cavity waveguides for high-power diode laser applications., 2001, , . Photoluminescence decay time measurements from self-organized InAs/GaAs quantum dots grown on 162 1.36

JENS TOMM

misoriented substrates. Nanotechnology, 2001, 12, 512-514.

#	Article	IF	CITATIONS
163	Staircase-like spectral dependence of ground-state luminescence time constants in high-density InAs/GaAs quantum dots. Applied Physics Letters, 2001, 78, 3214-3216.	1.5	41
164	Near-field photocurrent imaging of the optical mode profiles of semiconductor laser diodes. Applied Physics Letters, 2001, 78, 1463-1465.	1.5	12
165	<title>Aging properties of 840-nm ion-implanted VCSELs monitored by analysis of their photoelectric properties</title> . , 2000, , .		1
166	Near-field photocurrent spectroscopy of laser diode devices. Journal of Crystal Growth, 2000, 210, 296-302.	0.7	9
167	Photoelectric dichroism of oriented thin film CdS fabricated by pulsed-laser deposition. Solid State Communications, 2000, 116, 33-35.	0.9	22
168	Facet degradation of high-power diode laser arrays. Applied Physics A: Materials Science and Processing, 2000, 70, 377-381.	1.1	19
169	Effect of high-temperature annealing on GaInP/GaAs HBT structures grown by LP-MOVPE. Journal of Electronic Materials, 2000, 29, 205-209.	1.0	12
170	Strained InGaAs/GaPAsSb heterostructures grown on GaAs (001) for optoelectronic applications in the 1100–1550 nm range. Journal of Applied Physics, 2000, 88, 3004-3014.	1.1	24
171	Selective excitation and photoinduced bleaching of defects in InAlGaAs/GaAs high-power diode lasers. Applied Physics Letters, 2000, 77, 747-749.	1.5	9
172	Carrier transfer in self-assembled coupled InAs/GaAs quantum dots. Journal of Applied Physics, 2000, 88, 7162-7170.	1,1	53
173	Optical and photoelectrical properties of oriented ZnO films. Journal of Applied Physics, 2000, 87, 1844-1848.	1.1	37
174	High-Power Broad-Area Diode Lasers and Laser Bars. , 2000, , 173-223.		21
175	Far-infrared reflectivity study of lattice dynamics of narrow-gap HgCdMnTe semiconductors. Semiconductor Science and Technology, 1999, 14, 187-197.	1.0	10
176	Temperature dependent carrier escape from quantum well states in GaAs/GaAlAs graded index laser structures. Semiconductor Science and Technology, 1999, 14, 293-297.	1.0	7
177	Photoluminescence excitation due to hot excitons in narrow-gap. Semiconductor Science and Technology, 1999, 14, 148-155.	1.0	2
178	Phonon-assisted magnetopolaron effect in diluted magnetic semiconductors. Physical Review B, 1999, 59, 2731-2736.	1,1	1
179	Spectroscopic measurement of packaging-induced strains in quantum-well laser diodes. Journal of Applied Physics, 1999, 86, 1196-1201.	1.1	27
180	Emitter failure and thermal facet load in high-power laser diode arrays. Applied Physics A: Materials Science and Processing, 1998, 66, 483-486.	1.1	18

#	Article	IF	CITATIONS
181	Deep level spectroscopy of high-power laser diode arrays. Journal of Applied Physics, 1998, 84, 1325-1332.	1.1	25
182	Spin-flip effects in the magnetoluminescence and magnetoresistance of semimagnetic narrow-gapHg1â^xxâ^yCdxMnyTe. Physical Review B, 1998, 58, 4531-4537.	1.1	8
183	Direct spectroscopic measurement of mounting-induced strain in high-power optoelectronic devices. Applied Physics Letters, 1998, 73, 3908-3910.	1.5	37
184	Aging properties of high power laser diode arrays analyzed by Fourier-transform photocurrent measurements. Applied Physics Letters, 1997, 71, 2233-2235.	1.5	35
185	Monitoring of aging properties of AlGaAs high-power laser arrays. Journal of Applied Physics, 1997, 81, 2059-2063.	1.1	29
186	<title>Laser-based facet inspection system</title> ., 1997, , .		2
187	Waveguide Effect on the Image Formation Process in Near-field Photocurrent Spectroscopy of Semiconductor Laser Diodes. Surface and Interface Analysis, 1997, 25, 573-582.	0.8	3
188	Magnetoluminescence properties of Hg1â^'xCdxTe epitaxial layers and superlattice structures grown by metalorganic molecular beam epitaxy. Journal of Electronic Materials, 1996, 25, 1203-1208.	1.0	2
189	Optical absorption and photoluminescence of narrowâ€Gap Hg _{1â°'xâ°'y} Cd _x Mn _y Se single crystals. Physica Status Solidi (B): Basic Research, 1996, 195, 595-609.	0.7	5
190	Study of molecular beam epitaxial growth and optical characteristics of HgCdTe. Acta Physica Sinica (overseas Edition), 1996, 5, 370-376.	0.1	3
191	Optical nearâ€field photocurrent spectroscopy: A new technique for analyzing microscopic aging processes in optoelectronic devices. Applied Physics Letters, 1996, 69, 3981-3983.	1.5	37
192	Excitonic magnetoluminescence enhancement in semimagnetic. Semiconductor Science and Technology, 1996, 11, 1291-1301.	1.0	13
193	Photoluminescence and raman studies of high quality CdTe:I Epilayers. Journal of Electronic Materials, 1995, 24, 1269-1273.	1.0	1
194	Fast recombination processes in lead chalcogenide semiconductors studied via transient optical nonlinearities. Journal of Applied Physics, 1995, 77, 277-286.	1.1	66
195	Threshold of stimulated emission in multivalley lead salts. Journal of Applied Physics, 1995, 78, 7247-7254.	1.1	2
196	Distinct exciton-polaron resonance in the infrared edge emission of semimagneticHg1â^'xMnxTe. Physical Review B, 1995, 52, R11565-R11568.	1.1	4
197	Magnetoluminescence spectroscopic investigations in Hg0.7Cd0.3Te/Hg0.15Cd0.85Te superlattices. Semiconductor Science and Technology, 1995, 10, 469-475.	1.0	6
198	Photoluminescence properties of ZnGa2O4:Mn powder phosphors. Journal of Applied Physics, 1995, 78, 5691-5695.	1.1	89

#	Article	IF	CITATIONS
199	Evidence of Hybridization from a Direct Comparison of Semimagnetic and Nonsemimagnetic Ternary Lead Chalcogenides. Japanese Journal of Applied Physics, 1994, 33, 1928-1930.	0.8	0
200	Valence band hybridizing in europium-alloyed lead selenide. Semiconductor Science and Technology, 1994, 9, 1033-1041.	1.0	11
201	On the nature of the excitonic luminescence in narrow-gap Hg1â^'xCdxTe (x ≊ 0.3). Journal of Crystal Growth, 1994, 138, 175-181.	0.7	13
202	<title>Optical diagnostics of quaternary narrow-gap semiconductors</title> ., 1994, 2113, 17.		4
203	Band offsets in Eu-containing lead chalcogenides and lead chalcogenide superlattices from spectroscopic data. Semiconductor Science and Technology, 1993, 8, S176-S179.	1.0	10
204	A new model for the absorption coefficient of narrowâ€gap (Hg,Cd)Te that simultaneously considers band tails and band filling. Journal of Applied Physics, 1993, 73, 3486-3492.	1.1	17
205	Thermal-mismatch strain relaxation mechanisms in heteroepitaxial lead chalcogenide layers on Si substrates. Semiconductor Science and Technology, 1993, 8, S337-S341.	1.0	28
206	Optical and photoelectrical properties of Hg0.6Cd0.4Te. Semiconductor Science and Technology, 1992, 7, 578-582.	1.0	6
207	Some band structure related optical and photoelectrical properties of Pb1â^'xEuxSe (0≤â‰0.2). Journal of Applied Physics, 1992, 72, 1399-1404.	1.1	7
208	Applied Infrared Photoluminescence in Lead Salt Crystals. Crystal Research and Technology, 1991, 26, 757-766.	0.6	2
209	A Luminescence Study in the Pb1â^'xEuxSe System. Physica Status Solidi A, 1990, 119, 711-719.	1.7	12
210	On the Broadening Mechanisms Near theE0 Transition in Narrow-Gap (Hg, Cd)Te. Physica Status Solidi A, 1990, 121, 635-640.	1.7	6
211	Infrared Photoluminescence in Narrow-Gap Semiconductors. Physica Status Solidi A, 1990, 122, 11-42.	1.7	35
212	Infrared photoluminescence - a tool for HgCdTe crystal research. Crystal Research and Technology, 1990, 25, 1069-1078.	0.6	9
213	Infrared photoluminescence in p-Hg1â^'xCdxTe (0.23 ⩽ × ⩽ 1) in magnetic fields up to 6T. Solid State Communications, 1990, 76, 1159-1164.	0.9	11
214	Strain in Lead Salt Layers. A Luminescence Study. Physica Status Solidi A, 1989, 114, 621-628.	1.7	6
215	Detection of carbon monoxide, carbon dioxide and sulfur dioxide with pulsed tunable PbS1-xSex-diode lasers. Collection of Czechoslovak Chemical Communications, 1989, 54, 284-296.	1.0	17
216	Experimental evidence of strain-induced gap shifts in PbTe epitaxial layers by photoluminescence. Physica Status Solidi A, 1988, 106, 509-514.	1.7	9

#	Article	IF	CITATIONS
217	Eg versus x relation from photoluminescence and electron microprobe investigations in p-type Hg1â^xCdxTe (0.35 ⩽ x ⩽ 0.7). Journal of Crystal Growth, 1988, 86, 593-598.	0.7	24
218	Some aspects of the technology of lead salt diode lasers used in gas monitoring systems. Crystal Research and Technology, 1987, 22, 981-986.	0.6	5
219	Photoluminescence spectra of Pb1–xSnxTe epitaxial layers and heterostruetures up to room temperature. Physica Status Solidi A, 1985, 88, 277-281.	1.7	2
220	On the dispersion of the refractive index in active layers of lead-salt injection lasers. Physica Status Solidi A, 1984, 86, 433-438.	1.7	3
221	Direct Comparison of Photo- and Electroluminescence in Pb1â^'xSnxTe Diode Lasers. Physica Status Solidi A, 1983, 77, 175-179.	1.7	5
222	Defect Propagation in Broad-Area Diode Lasers. Materials Science Forum, 0, 725, 101-104.	0.3	5