Kurt G Pike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7052277/publications.pdf

Version: 2024-02-01

516710 713466 1,125 21 16 21 h-index citations g-index papers 21 21 21 1688 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Identification and optimization of a novel series of selective PIP5K inhibitors. Bioorganic and Medicinal Chemistry, 2022, 54, 116557.	3.0	5
2	Free energy perturbation in the design of EED ligands as inhibitors of polycomb repressive complex 2 (PRC2) methyltransferase. Bioorganic and Medicinal Chemistry Letters, 2021, 39, 127904.	2.2	10
3	Discovery of a Series of 7-Azaindoles as Potent and Highly Selective CDK9 Inhibitors for Transient Target Engagement. Journal of Medicinal Chemistry, 2021, 64, 15189-15213.	6.4	12
4	Diverse, Potent, and Efficacious Inhibitors That Target the EED Subunit of the Polycomb Repressive Complex 2 Methyltransferase. Journal of Medicinal Chemistry, 2021, 64, 17146-17183.	6.4	20
5	Pharmacology of the ATM Inhibitor AZD0156: Potentiation of Irradiation and Olaparib Responses Preclinically. Molecular Cancer Therapeutics, 2020, 19, 13-25.	4.1	104
6	Discovery of AZD4573, a Potent and Selective Inhibitor of CDK9 That Enables Short Duration of Target Engagement for the Treatment of Hematological Malignancies. Journal of Medicinal Chemistry, 2020, 63, 15564-15590.	6.4	57
7	The Identification of Potent, Selective, and Orally Available Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase: The Discovery of AZD0156 (8-{6-[3-(Dimethylamino)propoxy]pyridin-3-yl}-3-methyl-1-(tetrahydro-2 <i>H</i> -pyran-4-yl)-1,3-dihydro-2 <i>H</i> -lournal of Medicinal Chemistry, 2018, 61, 3823-3841.	-imidazo[4,79- <i>c</i>
8	Orally Bioavailable and Blood–Brain Barrier-Penetrating ATM Inhibitor (AZ32) Radiosensitizes Intracranial Gliomas in Mice. Molecular Cancer Therapeutics, 2018, 17, 1637-1647.	4.1	46
9	Targeting ATM for Cancer Therapy: Prospects for Drugging ATM. Cancer Drug Discovery and Development, 2018, , 185-208.	0.4	1
10	Discovery of a Series of 3-Cinnoline Carboxamides as Orally Bioavailable, Highly Potent, and Selective ATM Inhibitors. ACS Medicinal Chemistry Letters, 2018, 9, 809-814.	2.8	19
11	The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Science Advances, 2018, 4, eaat1719.	10.3	201
12	Discovery of Novel 3-Quinoline Carboxamides as Potent, Selective, and Orally Bioavailable Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase. Journal of Medicinal Chemistry, 2016, 59, 6281-6292.	6.4	56
13	Abstract 3041: Blood-brain barrier penetrating ATM inhibitor (AZ32) radiosensitises intracranial gliomas in mice. Cancer Research, 2016, 76, 3041-3041.	0.9	7
14	AZD2014, an Inhibitor of mTORC1 and mTORC2, Is Highly Effective in ER+ Breast Cancer When Administered Using Intermittent or Continuous Schedules. Molecular Cancer Therapeutics, 2015, 14, 2508-2518.	4.1	106
15	Discovery of AZD3147: A Potent, Selective Dual Inhibitor of mTORC1 and mTORC2. Journal of Medicinal Chemistry, 2015, 58, 2326-2349.	6.4	24
16	Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: The discovery of AZD8055 and AZD2014. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1212-1216.	2.2	192
17	Property based optimisation of glucokinase activators – discovery of the phase IIb clinical candidate AZD1656. MedChemComm, 2012, 3, 1077.	3.4	30
18	Overcoming retinoic acid receptor- \hat{l}_{\pm} based testicular toxicity in the optimisation of glucokinase activators. MedChemComm, 2011, 2, 771.	3.4	18

Kurt G Pike

#	Article	IF	CITATIONS
19	Design of a potent, soluble glucokinase activator with increased pharmacokinetic half-life. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3467-3470.	2.2	25
20	Matrix-based multiparameter optimisation of glucokinase activators: the discovery of AZD1092. MedChemComm, 2011, 2, 775.	3.4	30
21	Design of a potent, soluble glucokinase activator with excellent in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2705-2709.	2.2	83