Claudio J Villanueva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7052274/publications.pdf

Version: 2024-02-01

30 papers

2,046 citations

304743 22 h-index 477307 29 g-index

36 all docs 36 docs citations

times ranked

36

3495 citing authors

#	Article	IF	CITATIONS
1	Adipose-tissue plasticity in health and disease. Cell, 2022, 185, 419-446.	28.9	252
2	When fat talks, the gut listens: IRONing out metabolism. Cell Metabolism, 2021, 33, 1505-1506.	16.2	0
3	Regulation of Tumor Initiation by the Mitochondrial Pyruvate Carrier. Cell Metabolism, 2020, 31, 284-300.e7.	16.2	103
4	Finding a Needle in a Haystack: Identification of a Beige Fat Progenitor. Cell, 2020, 182, 537-539.	28.9	2
5	Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis. ELife, 2020, 9, .	6.0	45
6	T cell–mediated regulation of the microbiota protects against obesity. Science, 2019, 365, .	12.6	236
7	Phospholipid methylation regulates muscle metabolic rate through Ca2+ transport efficiency. Nature Metabolism, 2019, 1, 876-885.	11.9	30
8	Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism. Genes and Development, 2019, 33, 747-762.	5.9	26
9	Targeted deletion of Tcf7l2 in adipocytes promotes adipocyte hypertrophy and impaired glucose metabolism. Molecular Metabolism, 2019, 24, 44-63.	6.5	46
10	Anti-inflammatory microRNA-146a protects mice from diet-induced metabolic disease. PLoS Genetics, 2019, 15, e1007970.	3 . 5	48
11	Drosophila HNF4 Directs a Switch in Lipid Metabolism that Supports the Transition to Adulthood. Developmental Cell, 2019, 48, 200-214.e6.	7.0	51
12	The E3 ligase MARCH5 is a PPARγ target gene that regulates mitochondria and metabolism in adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E293-E304.	3 . 5	19
13	Identification of Phf16 and Pnpla3 as new adipogenic factors regulated by phytochemicals. Journal of Cellular Biochemistry, 2019, 120, 3599-3610.	2.6	4
14	PI3Ka-Akt1-mediated Prdm4 induction in adipose tissue increases energy expenditure, inhibits weight gain, and improves insulin resistance in diet-induced obese mice. Cell Death and Disease, 2018, 9, 876.	6.3	17
15	A Hepatocyte FOXN3-α Cell Glucagon Axis Regulates Fasting Glucose. Cell Reports, 2018, 24, 312-319.	6.4	10
16	Mitochondrial cardiomyopathies feature increased uptake and diminished efflux of mitochondrial calcium. Journal of Molecular and Cellular Cardiology, 2017, 113, 22-32.	1.9	42
17	Global Analysis of Plasma Lipids Identifies Liver-Derived Acylcarnitines as a Fuel Source for Brown Fat Thermogenesis. Cell Metabolism, 2017, 26, 509-522.e6.	16.2	185
18	Induction of thermogenic adipocytes: molecular targets and thermogenic small molecules. Experimental and Molecular Medicine, 2017, 49, e353-e353.	7.7	58

#	Article	IF	CITATIONS
19	RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. Journal of Clinical Investigation, 2017, 127, 987-1004.	8.2	33
20	Pask integrates hormonal signaling with histone modification via Wdr5 phosphorylation to drive myogenesis. ELife, 2016, 5, .	6.0	16
21	Estrogen Receptor (ER)α-regulated Lipocalin 2 Expression in Adipose Tissue Links Obesity with Breast Cancer Progression. Journal of Biological Chemistry, 2015, 290, 5566-5581.	3.4	61
22	Adipose Subtype-Selective Recruitment of TLE3 or Prdm16 by PPARÎ ³ Specifies Lipid Storage versus Thermogenic Gene Programs. Cell Metabolism, 2013, 17, 423-435.	16.2	128
23	Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle, 2012, 11, 4310-4322.	2.6	65
24	TLE3 Is a Dual-Function Transcriptional Coregulator of Adipogenesis. Cell Metabolism, 2011, 13, 413-427.	16.2	119
25	Licensing PPARÎ ³ to Work in Macrophages. Immunity, 2010, 33, 647-649.	14.3	16
26	Specific role for acyl CoA:Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids. Hepatology, 2009, 50, 434-442.	7.3	131
27	Inhibitor of DNA Binding 2 Is a Small Molecule-Inducible Modulator of Peroxisome Proliferator-Activated Receptor-Î ³ Expression and Adipocyte Differentiation. Molecular Endocrinology, 2008, 22, 2038-2048.	3.7	62
28	Inhibition of Adipocyte Differentiation by Nur77, Nurr1, and Nor1. Molecular Endocrinology, 2008, 22, 2596-2608.	3.7	74
29	Blocking VLDL secretion causes hepatic steatosis but does not affect peripheral lipid stores or insulin sensitivity in mice. Journal of Lipid Research, 2008, 49, 2038-2044.	4.2	136
30	Effects of DGAT1 deficiency on energy and glucose metabolism are independent of adiponectin. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E388-E394.	3.5	30