Yury A Skorik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7052218/publications.pdf

Version: 2024-02-01

172207 276539 2,103 92 29 41 citations h-index g-index papers 92 92 92 2096 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Alginate-Induced Disease Resistance in Plants. Polymers, 2022, 14, 661.	2.0	22
2	Cellulose Cryogels as Promising Materials for Biomedical Applications. International Journal of Molecular Sciences, 2022, 23, 2037.	1.8	30
3	Hybrid Nanoparticles and Composite Hydrogel Systems for Delivery of Peptide Antibiotics. International Journal of Molecular Sciences, 2022, 23, 2771.	1.8	8
4	Sodium Alginate–Gelatin Nanoformulations for Encapsulation of Bacillus velezensis and Their Use for Biological Control of Pistachio Gummosis. Materials, 2022, 15, 2114.	1.3	32
5	Chitosan microencapsulation of rhizobacteria for biological control of plant pests and diseases: Recent advances and applications. Rhizosphere, 2022, 23, 100565.	1.4	31
6	Hyaluronan-colistin conjugates: Synthesis, characterization, and prospects for medical applications. International Journal of Biological Macromolecules, 2022, 215, 243-252.	3.6	10
7	Biophysical Characterization and Cytocompatibility of Cellulose Cryogels Reinforced with Chitin Nanowhiskers. Polymers, 2022, 14, 2694.	2.0	5
8	Electrospinning of Polysaccharides for Tissue Engineering Applications. Reviews and Advances in Chemistry, 2021, 11, 112-133.	0.2	4
9	Antibacterial Properties of Fucoidans from the Brown Algae Fucus vesiculosus L. of the Barents Sea. Biology, 2021, 10, 67.	1.3	33
10	Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects. Biomedicines, 2021, 9, 341.	1.4	18
11	Cellulose cryogels prepared by regeneration from phosphoric acid solutions. Cellulose, 2021, 28, 4975-4989.	2.4	17
12	Modeling of Acute Pulmonary Arterial Hypertension in Pigs Using a Stable Thromboxane A2 Analogue (U46619): Dose Adjustment and Assessment of Hemodynamic Reactions. Bulletin of Experimental Biology and Medicine, 2021, 170, 729-733.	0.3	4
13	Thermal Properties and Structural Features of Multilayer Films Based on Chitosan and Anionic Polysaccharides. Biomolecules, 2021, 11, 762.	1.8	10
14	N-[4-(N,N,N-Trimethylammonium)Benzyl]Chitosan Chloride as a Gene Carrier: The Influence of Polyplex Composition and Cell Type. Materials, 2021, 14, 2467.	1.3	0
15	Generation of Reactive Oxygen Species by Human Whole Blood Cells Exposed to Iron Oxide Magnetic Nanoparticles Coated with Different Shells. Bulletin of Experimental Biology and Medicine, 2021, 171, 77-80.	0.3	2
16	Influence of Iron Oxide-Based Nanoparticles with Various Shell Modifications on the Generation of Reactive Oxygen Species inÂStimulated Human Blood Cells in vitro. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 782-791.	0.2	2
17	Hyaluronan/Diethylaminoethyl Chitosan Polyelectrolyte Complexes as Carriers for Improved Colistin Delivery. International Journal of Molecular Sciences, 2021, 22, 8381.	1.8	15
18	Chitin Cryogels Prepared by Regeneration from Phosphoric Acid Solutions. Materials, 2021, 14, 5191.	1.3	5

#	Article	IF	Citations
19	Hyaluronan/colistin polyelectrolyte complexes: Promising antiinfective drug delivery systems. International Journal of Biological Macromolecules, 2021, 187, 157-165.	3.6	17
20	Synthesis and Characterization of Novel Succinyl Chitosan-Dexamethasone Conjugates for Potential Intravitreal Dexamethasone Delivery. International Journal of Molecular Sciences, 2021, 22, 10960.	1.8	19
21	Encapsulation of Plant Biocontrol Bacteria with Alginate as a Main Polymer Material. International Journal of Molecular Sciences, 2021, 22, 11165.	1.8	94
22	Reducing Drought Stress in Plants by Encapsulating Plant Growth-Promoting Bacteria with Polysaccharides. International Journal of Molecular Sciences, 2021, 22, 12979.	1.8	41
23	Microencapsulation of a Pseudomonas Strain (VUPF506) in Alginate–Whey Protein–Carbon Nanotubes and Next-Generation Sequencing Identification of This Strain. Polymers, 2021, 13, 4269.	2.0	18
24	Transcatheter radiofrequency pulmonary artery denervation in swine: the evaluation of lesion degree, hemodynamics and pulmonary hypertension inducibility. BMC Pulmonary Medicine, 2021, 21, 418.	0.8	3
25	The effect of polydisperse fucoidans from Fucus vesiculosus on Hep G2 and Chang liver cells. Bioactive Carbohydrates and Dietary Fibre, 2020, 21, 100209.	1.5	8
26	Polysaccharides in Ocular Drug Delivery. Pharmaceutics, 2020, 12, 22.	2.0	92
27	Diethylaminoethyl chitosan–hyaluronic acid polyelectrolyte complexes. International Journal of Biological Macromolecules, 2020, 146, 1161-1168.	3.6	23
28	Silver Nanoparticles on Chitosan/Silica Nanofibers: Characterization and Antibacterial Activity. International Journal of Molecular Sciences, 2020, 21, 166.	1.8	58
29	Bacterial Cellulose (Komagataeibacter rhaeticus) Biocomposites and Their Cytocompatibility. Materials, 2020, 13, 4558.	1.3	11
30	Branched architecture of fucoidan characterized by dynamic and static light scattering. Colloid and Polymer Science, 2020, 298, 1349-1359.	1.0	5
31	Nonspecific enzymatic hydrolysis of a highly ordered chitopolysaccharide substrate. Carbohydrate Research, 2020, 498, 108191.	1.1	7
32	Cytocompatibility of Bilayer Scaffolds Electrospun from Chitosan/Alginate-Chitin Nanowhiskers. Biomedicines, 2020, 8, 305.	1.4	17
33	Polypeptide Self-Assembled Nanoparticles as Delivery Systems for Polymyxins B and E. Pharmaceutics, 2020, 12, 868.	2.0	20
34	Mucoadhesive cholesterol-chitosan self-assembled particles for topical ocular delivery of dexamethasone. International Journal of Biological Macromolecules, 2020, 158, 811-818.	3.6	24
35	Effect of Double Substitution in Cationic Chitosan Derivatives on DNA Transfection Efficiency. Polymers, 2020, 12, 1057.	2.0	8
36	Polymyxin Delivery Systems: Recent Advances and Challenges. Pharmaceuticals, 2020, 13, 83.	1.7	39

3

#	Article	IF	CITATIONS
37	Biocatalysis of Industrial Kraft Pulps: Similarities and Differences between Hardwood and Softwood Pulps in Hydrolysis by Enzyme Complex of Penicillium verruculosum. Catalysts, 2020, 10, 536.	1.6	16
38	Needleless Electrospinning of a Chitosan Lactate Aqueous Solution: Influence of Solution Composition and Spinning Parameters. Technologies, 2020, 8, 2.	3.0	6
39	Biological Safety and Biodistribution of Chitosan Nanoparticles. Nanomaterials, 2020, 10, 810.	1.9	34
40	Electrospun Bilayer Chitosan/Hyaluronan Material and Its Compatibility with Mesenchymal Stem Cells. Materials, 2019, 12, 2016.	1.3	41
41	Alginate Gel Reinforcement with Chitin Nanowhiskers Modulates Rheological Properties and Drug Release Profile. Biomolecules, 2019, 9, 291.	1.8	42
42	Preparation and properties of chitosan–nanodiamond dispersions and composite films. Diamond and Related Materials, 2019, 98, 107483.	1.8	3
43	Design and Antitumor Activity of Platinum Complexes. Pharmaceutical Chemistry Journal, 2019, 53, 6-14.	0.3	13
44	Synthesis of novel 1H-tetrazole derivatives of chitosan via metal-catalyzed 1,3-dipolar cycloaddition. Catalytic and antibacterial properties of [3-(1H-tetrazole-5-yl)ethyl]chitosan and its nanoparticles. International Journal of Biological Macromolecules, 2019, 132, 340-350.	3.6	35
45	Pervaporation membranes of a simplex type with polyelectrolyte layers of chitosan and sodium hyaluronate. Carbohydrate Polymers, 2019, 209, 10-19.	5.1	31
46	Pervaporation multilayer membranes based on a polyelectrolyte complex of \hat{l} »-carrageenan and chitosan. Carbohydrate Polymers, 2018, 181, 86-92.	5.1	46
47	N-[4-(N,N,N-trimethylammonium)benzyl]chitosan chloride: Synthesis, interaction with DNA and evaluation of transfection efficiency. Carbohydrate Polymers, 2018, 181, 693-700.	5.1	35
48	Azide pre-click modification of chitosan: N-(2-azidoethyl)chitosan. Russian Chemical Bulletin, 2018, 67, 1915-1919.	0.4	14
49	Preparation of N-succinyl-chitin nanoparticles and their applications in otoneurological pathology. International Journal of Biological Macromolecules, 2018, 120, 1023-1029.	3.6	12
50	Accessibility of chitin and chitosan in enzymatic hydrolysis: A review. Polymer Degradation and Stability, 2018, 156, 269-278.	2.7	71
51	Preparation of Succinyl-Chitin Nanoparticles for Biomedical Applications. Doklady Chemistry, 2018, 480, 114-116.	0.2	3
52	Comparative Study of Diethylaminoethyl-Chitosan and Methylglycol-Chitosan as Potential Non-Viral Vectors for Gene Therapy. Polymers, 2018, 10, 442.	2.0	42
53	Polymorphic Modifications of Chitosan. Crystallography Reports, 2018, 63, 303-313.	0.1	54
54	Preparation and properties of chitosan/nano-diamond solutions and films. Research & Reviews Journal of Material Sciences, 2018, 06, .	0.1	0

#	Article	IF	Citations
55	Development of drug delivery systems for taxanes using ionic gelation of carboxyacyl derivatives of chitosan. Carbohydrate Polymers, 2017, 162, 49-55.	5.1	39
56	Conjugation of Succinate to Chitosan Increases the Cochlear Cytoprotective Effect. Pharmaceutical Chemistry Journal, 2017, 50, 711-714.	0.3	6
57	Synthesis of N-succinyl- and N-glutaryl-chitosan derivatives and their antioxidant, antiplatelet, and anticoagulant activity. Carbohydrate Polymers, 2017, 166, 166-172.	5.1	47
58	Chitosan and its derivatives: vectors in gene therapy. Russian Chemical Reviews, 2017, 86, 231-239.	2.5	70
59	Influence of chitosan-chitin nanofiber composites on cytoskeleton structure and the proliferation of rat bone marrow stromal cells. Journal of Materials Science: Materials in Medicine, 2017, 28, 21.	1.7	26
60	Click reactions in chitosan chemistry. Russian Chemical Bulletin, 2017, 66, 769-781.	0.4	37
61	O,N-(2-sulfoethyl)chitosan: Synthesis and properties of solutions and films. Carbohydrate Polymers, 2017, 157, 866-874.	5.1	19
62	Two-Ply Composite Membranes with Separation Layers from Chitosan and Sulfoethylcellulose on a Microporous Support Based on Poly(diphenylsulfone-N-phenylphthalimide). Molecules, 2017, 22, 2227.	1.7	7
63	Characterization of Clusters and Unimers in Associating Solutions of Chitosan by Dynamic and Static Light Scattering. Macromolecular Chemistry and Physics, 2016, 217, 1636-1644.	1.1	10
64	Biodegradable Micellar HPMA-Based Polymer–Drug Conjugates with Betulinic Acid for Passive Tumor Targeting. Biomacromolecules, 2016, 17, 3493-3507.	2.6	30
65	Preparation and analysis of multilayer composites based on polyelectrolyte complexes. Crystallography Reports, 2016, 61, 945-953.	0.1	24
66	Comparison of the acylation of chitosan with succinic anhydride in aqueous suspension and in solution. Russian Chemical Bulletin, 2015, 64, 1168-1171.	0.4	9
67	Chitosan-isoniazid conjugates: Synthesis, evaluation of tuberculostatic activity, biodegradability and toxicity. Carbohydrate Polymers, 2015, 127, 309-315.	5.1	25
68	The interaction of amino acids, peptides, and proteins with DNA. International Journal of Biological Macromolecules, 2015, 78, 39-45.	3.6	18
69	Detection and determination of some phenolic and cinnamic acids in plant extracts. Journal of Analytical Chemistry, 2015, 70, 1406-1411.	0.4	4
70	Tetrazole derivatives of chitosan: synthetic approaches and evaluation of toxicity. Russian Chemical Bulletin, 2014, 63, 1624-1632.	0.4	9
71	Adhesion, Growth, and Proliferation of Endothelial Cells on Biopolymer Extracellular Film Matrices. Bulletin of Experimental Biology and Medicine, 2014, 158, 153-158.	0.3	6
72	Chitosan conjugates with biologically active compounds: design strategies, properties, and targeted drug delivery. Russian Chemical Bulletin, 2012, 61, 781-795.	0.4	32

#	Article	IF	CITATIONS
73	Carboxyalkylation of chitosan in the gel state. Carbohydrate Polymers, 2012, 90, 1176-1181.	5.1	24
74	Carboxyethylated polyaminostyrene for selective copper removal. Polymer Bulletin, 2012, 68, 1065-1078.	1.7	8
75	Metal Binding to Ligand-Containing Peptide Nucleic Acids. Inorganic Chemistry, 2011, 50, 6083-6092.	1.9	32
76	Coordination-Driven Inversion of Handedness in Ligand-Modified PNA. Inorganic Chemistry, 2011, 50, 11929-11937.	1.9	16
77	Evaluation of various chitin-glucan derivatives from Aspergillus niger as transition metal adsorbents. Bioresource Technology, 2010, 101, 1769-1775.	4.8	47
78	Influence of metal coordination on conductivity behavior in poly(butadiene–acrylonitrile)–CoCl2 system. Electrochimica Acta, 2008, 53, 5322-5333.	2.6	6
79	<i>N</i> â€alkylation of chitosan by βâ€halopropionic acids in the presence of various acceptors. Journal of Applied Polymer Science, 2008, 108, 119-127.	1.3	18
80	N-Aryl-3-Aminopropionic acids as selective reagents for the determination of copper in metallurgical products. Journal of Analytical Chemistry, 2005, 60, 240-246.	0.4	11
81	Copper(II) complexes with N-(2-carboxyethyl)anthranilic acid H2CEAnt. Synthesis and crystal structure of [Cu(CEAnt)(H2O)] â« H2O. Russian Chemical Bulletin, 2005, 54, 1563-1568.	0.4	2
82	New hybrid chelating sorbents with grafted 3-aminopropionate groups based on mixed silicon, aluminum, titanium, or zirconium oxides. Russian Chemical Bulletin, 2005, 54, 1836-1841.	0.4	10
83	3,3,3-Trifluoro-N′-(3-trifluoromethylphenyl)-1,2-propanediamine and its N-mono-and N,N-dicarboxyethyl derivatives: synthesis, protolytic and complexation properties. Russian Chemical Bulletin, 2005, 54, 2545-2549.	0.4	1
84	Bis [N-(2-hydroxyethyl)- \hat{l}^2 -alaninato]copper(II). Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, m510-m512.	0.4	10
85	Complexation Models of N-(2-Carboxyethyl)chitosans with Copper(II) Ions. Biomacromolecules, 2005, 6, 189-195.	2.6	34
86	Influence of Metal Coordination on the Mismatch Tolerance of Ligand-Modified PNA Duplexes. Journal of the American Chemical Society, 2005, 127, 14628-14639.	6.6	60
87	Antioxidant and antimutagenic activity of -(2-carboxyethyl)chitosan. Toxicology and Applied Pharmacology, 2004, 201, 303-310.	1.3	74
88	Synthesis and sorption properties of new hybrid chelating sorbents with \hat{l}^2 -alanine functional groups. Russian Chemical Bulletin, 2004, 53, 2730-2735.	0.4	5
89	N-(2-Carboxyethyl)chitosans: regioselective synthesis, characterisation and protolytic equilibria. Carbohydrate Research, 2003, 338, 271-276.	1.1	63
90	Synthesis, XRD structure and properties of diaqua(p-toluidine-N,N-di-3-propionato)copper(II) dihydrate [Cu(p-Tdp)(H2O)2]·2H2O. Polyhedron, 2002, 21, 2719-2725.	1.0	9

Yury A Skorik

#	Article	IF	CITATIONS
91	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 385-389.	0.3	2
92	Title is missing!. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 796-802.	0.3	3