
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7051886/publications.pdf Version: 2024-02-01

Ειμ Τλολ

#	Article	IF	CITATIONS
1	Channel-flow triple electrode for simultaneous in situ detection of platinum and copper dissolution. Journal of Electroanalytical Chemistry, 2022, 904, 115906.	3.8	2
2	Identification of Chromium-Depleted Area around Chromium Nitride Precipitates in Heat-affected Zone of Lean-Duplex Stainless Steel and <i>In-situ</i> Observation of Preferential Dissolution by EC-AFM. ISIJ International, 2022, 62, 568-576.	1.4	4
3	Effects of gap on galvanic corrosion behavior of aluminum alloy A5052/carbon steel SS400 couples in NaCl solutions. Keikinzoku/Journal of Japan Institute of Light Metals, 2021, 71, 96-101.	0.4	1
4	Effects of NaCl concentration on galvanic corrosion behavior of aluminum alloy A5052/carbon steel SS400 couple. Keikinzoku/Journal of Japan Institute of Light Metals, 2021, 71, 89-95.	0.4	0
5	Observation of Pit Initiation and Growth of Stainless Steel under a Chloride Solution Droplet —Effect of S Content on Pit Initiation, Growth, and Repassivation—. Materials Transactions, 2021, 62, 412-419.	1.2	4
6	Effect of Iron Rust on Hydrogen Uptake during Steel Corrosion under an Aqueous NaCl Droplet. ISIJ International, 2021, 61, 1186-1193.	1.4	4
7	Effects of Fe ³⁺ on the Corrosion Behavior of High-Purity Aluminum in Neutral Solutions Containing Cl ^{â^} . Materials Transactions, 2021, 62, 492-497.	1.2	6
8	Simultaneous Measurements of Polarization Resistance and Hydrogen Permeation Current of Iron in an Aqueous NaCl Droplet. ISIJ International, 2021, 61, 1222-1228.	1.4	4
9	Effect of Environmental Factors on Hydrogen Absorption into Steel Sheet under a Wet-dry Cyclic Corrosion Condition. ISIJ International, 2021, 61, 1229-1235.	1.4	6
10	Time-Resolved Measurements of Dissolution Rates of Platinum and Palladium by a Solution Flow Cell Combined with ICP-MS. Materials Transactions, 2021, 62, 797-806.	1.2	3
11	Influence of the degree of saturation on carbon steel corrosion in soil. Corrosion Science, 2021, 189, 109568.	6.6	25
12	Effects of Crevice Geometry on Corrosion Behavior of Steel in NaCl Solution. Zairyo To Kankyo/ Corrosion Engineering, 2021, 70, 10-17.	0.2	0
13	Cut-Edge Corrosion Behavior of Prepainted 55% Al–Zn Steel with Chromate-free Primers in Various Atmospheric Environments. ISIJ International, 2021, 61, 2620-2628.	1.4	0
14	Corrosion Monitoring of Carbon Steel in Non-Irradiated, Humidity-Controlled Environments Simulating Gamma-Ray Irradiation. Zairyo To Kankyo/ Corrosion Engineering, 2021, 70, 358-364.	0.2	1
15	Corrosion Behavior of Zinc Covered with Native Oxides Under Thin Solution Films. Corrosion, 2020, 76, 562-569.	1.1	4
16	Dissolution and the Consequent Surface Enrichment of Platinum in Pt–Cu Binary Alloys under Potential Cycling. Journal of the Electrochemical Society, 2020, 167, 101504.	2.9	1
17	In Situ Evaluation of Carbon Steel Corrosion under Salt Spray Test by Electrochemical Impedance Spectroscopy. Journal of the Electrochemical Society, 2020, 167, 101508.	2.9	10
18	Passivation Mechanism of Galvanized Steel Rebar in Fresh Concrete. ISIJ International, 2020, 60, 337-345.	1.4	13

#	Article	IF	CITATIONS
19	EIS Characteristics of Galvanic Couple of Aluminum Alloy and High-strength Steel under Thin Solution Films. Journal of the Electrochemical Society, 2020, 167, 131507.	2.9	9
20	Influence of Soil Particle Size, Covering Thickness, and pH on Soil Corrosion of Carbon Steel. ISIJ International, 2020, 60, 2533-2540.	1.4	6
21	Effect of Environmental Factors on Hydrogen Absorption into Steel Sheet under a Wet-dry Cyclic Corrosion Condition. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 448-456.	0.4	5
22	Corrosion Monitoring in Humidity-Controlled Environment Simulating Gamma Ray Irradiation. Zairyo To Kankyo/ Corrosion Engineering, 2020, 69, 107-111.	0.2	1
23	Identical-Location Scanning Electron Microscopy Observation of Surface Morphological Changes of Pt-Cu Nanoparticles. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2020, 84, 244-252.	0.4	1
24	Time-Resolved Measurements of Dissolution Rates of Platinum and Palladium by a Solution Flow Cell combined with ICP-MS. Zairyo To Kankyo/ Corrosion Engineering, 2020, 69, 221-230.	0.2	0
25	Identical-Location Scanning Electron Microscopy Observation of Surface Morphological Changes of Pt–Cu Nanoparticles. Materials Transactions, 2020, 61, 1949-1957.	1.2	3
26	Hydrogen Absorption Behavior of Pre-Rusted Steels under an NaCl Droplet. Journal of the Electrochemical Society, 2019, 166, C243-C249.	2.9	11
27	Effect of Boron Distribution on the Intergranular Corrosion Resistance of UNS S32506 Duplex Stainless Steels. Journal of the Electrochemical Society, 2019, 166, C375-C381.	2.9	8
28	Measurement of pH in a Thin Electrolyte Droplet Using the Kelvin Probe Technique. Materials Transactions, 2019, 60, 531-537.	1.2	7
29	Cathodic protection of type 310S stainless steel in a chloride–bromide mixed molten salt at 923 K. Corrosion Science, 2019, 157, 62-69.	6.6	8
30	Dissolution and Consequent Morphological Evolution of Electrodeposited Ptâ^'Cu Nanoparticles under Potential Cycling in 0.5 M H2SO4Solution. Journal of the Electrochemical Society, 2019, 166, C3170-C3178.	2.9	6
31	Simultaneous Measurements of Corrosion Potential and Hydrogen Permeation Current in Atmospheric Corrosion of Steel. ISIJ International, 2019, 59, 1659-1666.	1.4	14
32	Electrochemical monitoring of the degradation of galvanized steel in simulated marine atmosphere. Corrosion Science, 2019, 147, 273-282.	6.6	22
33	Observation of Pit Initiation and Growth of Stainless Steel under a Chloride Solution Droplet―Effect of S Content on Pit Initiation, Growth and Repassivation―. Zairyo To Kankyo/ Corrosion Engineering, 2019, 68, 347-354.	0.2	0
34	Corrosion behaviour of austenitic stainless steels in carbonate melt at 923â€⁻K under controlled CO2-O2 environment. Corrosion Science, 2018, 133, 310-317.	6.6	33
35	Enhancing Corrosion Resistance of Type 310S Stainless Steel in Carbonate Melt by Hot-Dip Aluminizing. Journal of the Electrochemical Society, 2018, 165, C403-C411.	2.9	9
36	Corrosion Behavior of Zinc under Thin Solution Films of Different Thicknesses. Journal of the Electrochemical Society, 2018, 165, C590-C600.	2.9	22

#	Article	IF	CITATIONS
37	Electrochemical Evaluation of Corrosion Resistance of Trivalent Chromate Conversion Coatings with Different Organic Additives. ISIJ International, 2018, 58, 1316-1323.	1.4	10
38	â¢. Advanced Electrochemical Methods for Corrosion Study―Kelvin Method―. Zairyo To Kankyo/ Corrosion Engineering, 2018, 67, 145-149.	0.2	2
39	Pitting corrosion of sensitised type 304 stainless steel under wet–dry cycling condition. Corrosion Science, 2017, 118, 217-226.	6.6	46
40	A Mechanistic Study of Dissolution of Pt–Fe Binary Alloys in 0.5 M H ₂ SO ₄ Solution by Channel Flow Triple Electrode. Journal of the Electrochemical Society, 2017, 164, C104-C112.	2.9	10
41	Effect of pH on Hydrogen Absorption into Steel in Neutral and Alkaline Solutions. Materials Transactions, 2017, 58, 211-217.	1.2	7
42	Monitoring the Early Stage of Degradation of Epoxy-Coated Steel for Ballast Tank by Electrochemical Impedance Spectroscopy. Materials Transactions, 2017, 58, 1687-1694.	1.2	4
43	Analysis of Effect of Automobile Moving Environment in Deicing Salt Spraying Area on Hydrogen Absorption into Steel Sheet by Using Temperature-compensating Hydrogen Absorption Monitoring System. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2017, 103, 27-35.	0.4	13
44	Evaluation of Hydrogen Absorption into Iron by Alternating Current Responses in an Electrochemical Hydrogen Permeation Cell. ISIJ International, 2016, 56, 424-430.	1.4	11
45	Evaluation of Epoxy Coating for Ballast Tanks under Thermal Cycling by Electrochemical Impedance Spectroscopy. ISIJ International, 2016, 56, 2029-2036.	1.4	7
46	Hydrogen Absorption Behavior into Zn and Zn–Al Coated Steels during Corrosion in Aqueous Solutions. ISIJ International, 2016, 56, 444-451.	1.4	16
47	In-Situ Monitoring of Preferential Dissolution of Pt-50at.%Fe Alloy under Potential Cycling in 0.5 M H ₂ SO ₄ Solution Using a Channel Flow Triple Electrode. Journal of the Electrochemical Society, 2016, 163, F1558-F1563.	2.9	12
48	Communication—Platinum Dissolution in Alkaline Electrolytes. Journal of the Electrochemical Society, 2016, 163, C853-C855.	2.9	13
49	Communication—Cathodic Platinum Dissolution Studied Using a Channel Flow Double Electrode. Journal of the Electrochemical Society, 2016, 163, F421-F423.	2.9	7
50	Recent Activities in ISIJ HLP Research Committee Corrosion Working Group: Proposal of pH Buffer Test Solution for Fitness-For-Purpose HIC Evaluations. ISIJ International, 2016, 56, 498-503.	1.4	3
51	2.è…食ã®ç"ç©¶å^†é‡Žã«ãŠãʿã,‹é›»æ°—化å¦ã,≋f³ãf"ãf¼ãf€ãf³ã,¹ã®å^©ç"¨ã¨èª2題. Electrochemistry,	2046, 84	I, &99-903.
52	Effect of Oxygen Evolution on Platinum Dissolution in Acidic Solution. Materials Transactions, 2015, 56, 1214-1218.	1.2	6
53	Pitting Corrosion of Stainless Steel 430 in the Presence of Thin MgCl ₂ Solution Films: Effects of Film Diameter and Thickness. Materials Transactions, 2015, 56, 1219-1225.	1.2	12
54	Platinum Dissolution from Carbon Supported Nanoparticles. ECS Transactions, 2015, 69, 255-261.	0.5	5

#	Article	IF	CITATIONS
55	A Method for Determining the Corrosion Rate of a Metal under a Thin Electrolyte Film. Journal of the Electrochemical Society, 2015, 162, C135-C139.	2.9	46
56	Evaluation of hydrogen absorption into steel in automobile moving environments. Corrosion Science, 2015, 98, 430-437.	6.6	61
57	Pit Initiation and Repassivation of Stainless Steels Exposed to Cyclic Relative Humidity Changes. Journal of the Electrochemical Society, 2015, 162, C419-C425.	2.9	12
58	In Situ Analysis of Scan Rate Effects on Pt Dissolution Under Potential Cycling Using a Channel Flow Double Electrode. Electrocatalysis, 2015, 6, 179-184.	3.0	9
59	Improvement of Pitting Corrosion Resistance of Type 430 Stainless Steel by Electrochemical Treatments in a Concentrated Nitric Acid. ISIJ International, 2014, 54, 199-205.	1.4	9
60	Effect of Chloride on Platinum Dissolution. Electrochimica Acta, 2014, 143, 161-167.	5.2	25
61	In Situ Analysis of Chloride Effect on Platinum Dissolution by a Channel-Flow Multi-Electrode System. Journal of the Electrochemical Society, 2014, 161, F845-F849.	2.9	31
62	In-Situ Monitoring of Platinum Dissolution under Potential Cycling by a Channel Flow Double Electrode. Journal of the Electrochemical Society, 2014, 161, F380-F385.	2.9	31
63	Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method. Corrosion Science, 2014, 87, 80-88.	6.6	96
64	Selective Dissolution of Pt–Co Binary Alloys and Surface Enrichment of Platinum in Sulfuric Acid Solution. Materials Transactions, 2014, 55, 1350-1355.	1.2	9
65	Influence of corrosion of SS316L bipolar plate on PEFC performance. Journal of Power Sources, 2013, 231, 226-233.	7.8	27
66	Hydrogen Absorption Behavior of Titanium Alloys by Cathodic Polarization. , 2013, , .		0
67	Applicability of a Channel Flow Double Electrode as a Quantitative Monitoring Method of Pt Dissolution under Potential Cycling. ECS Transactions, 2013, 58, 1309-1320.	0.5	4
68	Selective dissolution of binary Pt–Co alloys of different compositions in sulphuric acid solution. Corrosion Science, 2012, 65, 512-519.	6.6	17
69	Effect of potential cycling on dissolution of equimolar Pt–M (M: Co, Ni, Fe) alloys in sulfuric acid solution. Electrochimica Acta, 2012, 85, 268-272.	5.2	18
70	Effect of Applied Stress on the Initiation of Localized Corrosion for Sensitized 304 Stainless Steel in Aqueous MgCl2 Solutions. Zairyo To Kankyo/ Corrosion Engineering, 2012, 61, 14-21.	0.2	0
71	Galvanic Corrosion of a Zn/steel Couple in Aqueous NaCl. ISIJ International, 2011, 51, 1882-1889.	1.4	16
72	Electrochemical Preparation and Mechanical Properties of Dog-bone Cu Foils. Electrochemistry, 2010, 78, 153-156.	1.4	0

#	Article	IF	CITATIONS
73	The Influence of Fe Ion Emission from Metal Bipolar Plates on PEFC Performance. Electrochemistry, 2010, 78, 825-831.	1.4	2
74	Effect of Creep Deformation on Inelastic Deformation of Electroplated Copper Foil. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76, 1351-1358.	0.2	1
75	Optical Visualization of Fluid Flow during Electrodeposition of Zn Deposits at the Interface between Two Immiscible Liquids. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2010, 61, 779-785.	0.2	0
76	Change in Interfacial Tension at the Interface Between Two Immiscible Liquids during Electrodeposition of Zinc. Electrochemical and Solid-State Letters, 2010, 13, D57.	2.2	2
77	Optical visualization of concentration field of Zn2+ during galvanic corrosion of a Zn/steel couple. Corrosion Science, 2010, 52, 3421-3427.	6.6	17
78	鋿•åŒ−304ã,1テンレã,1é‹14ã®å±€éƒ¨è…食挙動ã«å⁻¾ã™ã,‹å¿œåŠ›ä½œç"¨ã®DSSC法ã«ã,^ã,‹æœè¨Ž.	Zairyo To	Mankyo/ Co
79	å^†æ¥µæ›²ç·šÂ·ã,µã,ª,¯ãfªãffã,¯ãfœãf«ã,¿ãf³ãf¡ãf^ãfªï¼¼¼^9)è食·é~²é£Ÿ. Electrochemistry, 2009, 77,	9841-986.	0
80	OS0520 Ratchet Deformation and Creep Constitutive Model of Electroplating Copper Foil. The Proceedings of the Materials and Mechanics Conference, 2009, 2009, 616-618.	0.0	0
81	Investigations of Cut-edge Corrosion of Galvanized Steels by the Scanning Vibrating Electrode Technique. ECS Transactions, 2008, 11, 91-105.	0.5	19
82	New Analytical Method for Measurement of Hydrogen Partial Pressure Using a Tubular Hydrogen Pump-Gauge. Sensor Letters, 2008, 6, 246-249.	0.4	3
83	OS0804 Fatigue of Electroplated Copper Foil by Ratchetting Deformation. The Proceedings of the Materials and Mechanics Conference, 2008, 2008, _OS0804-1OS0804-2	0.0	0
84	1202 Effect of creep deformation in inelastic deformation of electroplated copper foil. The Proceedings of the JSME Annual Meeting, 2008, 2008.1, 145-146.	0.0	0
85	Electrochemical Behavior of AISI 304SS with Particulate Silica Coating in 0.1â€,M NaCl. Journal of the Electrochemical Society, 2007, 154, C312.	2.9	8
86	Growth Behavior and Structure of Copper Film Electrodeposited at the Interface Between Two Immiscible Liquids. Journal of the Electrochemical Society, 2007, 154, D617.	2.9	2
87	Effects of Particulate Silica Coatings on Localized Corrosion Behavior of AISI 304SS under Atmospheric Corrosion Conditions. Journal of the Electrochemical Society, 2007, 154, C318.	2.9	15
88	Electrochemical Oscillation During Electrodeposition of Zinc at the Interface Between Two Immiscible Liquids. Electrochemistry, 2007, 75, 731-733.	1.4	3
89	Ionic Distribution During Galvanic Corrosion of a Fe-Zn Couple. Journal of the Japan Society of Colour Material, 2007, 80, 385-389.	0.1	2
90	Detection of corrosion fatigue cracking through current responses induced by cyclic stressing. Corrosion Science, 2007, 49, 248-254.	6.6	6

#	Article	IF	CITATIONS
91	Preparation and Properties of a Leaky Hydrogen Pump-Gauge. Sensor Letters, 2007, 5, 467-470.	0.4	0
92	Distribution of pH during galvanic corrosion of a Zn/steel couple. Electrochimica Acta, 2004, 49, 1019-1026.	5.2	91
93	The spatial distribution of Zn2+ during galvanic corrosion of a Zn/steel couple. Electrochimica Acta, 2004, 49, 2279-2285.	5.2	73
94	Monitoring of corrosion fatigue cracking using harmonic analysis of current responses induced by cyclic stressing. Corrosion Science, 2004, 46, 1549-1563.	6.6	13
95	Electrodeposition of PbO2Thin Films at the Interface of Two Immiscible Liquids. Chemistry Letters, 2000, 29, 1306-1307.	1.3	5
96	Investigation of the Mechanism of the Corrosion Fatigue by Analysis of Cyclic Strain and Current Response. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 1075-1082.	0.4	4
97	Crack Detection by Harmonics Analysis of the Polarization Current during Corrosion Fatigue of Iron. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 276-282.	0.4	0
98	Fatigue, Cyclic Deformation and Microstructure. The Effects of Straining Frequency and Stress Ratio on Polarization Current Responded to Cyclic Strain in a Commercial Iron ISIJ International, 1997, 37, 1189-1196.	1.4	11
99	Analysis of the Polarization Current Responded to Cyclic Strain during Corrosion Fatigue of Iron. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1997, 61, 1249-1254.	0.4	1