Alexander E Kurtsevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/705087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast estimation of the internal conversion rate constant in photophysical applications. Physical Chemistry Chemical Physics, 2021, 23, 6344-6348.	2.8	16
2	The effect of molecular structure on the efficiency of 1,4-diazine–based D–(π)–A push-pull systems for non-doped OLED applications. Dyes and Pigments, 2021, 187, 109124.	3.7	16
3	Investigation of 4,6-di(hetero)aryl-substituted pyrimidines as emitters for non-doped OLED and laser dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113089.	3.9	9
4	Thermal and laser sintering of a highly stable inkjet ink consisting of silver nanoparticles stabilized by a combination of a short chain carboxylic acid and a polymeric dispersant. Materials Today: Proceedings, 2018, 5, 16042-16050.	1.8	8
5	Odd-Number Cyclo[<i>n</i>]Carbons Sustaining Alternating Aromaticity. Journal of Physical Chemistry A, 2022, 126, 2445-2452.	2.5	7
6	Selective Laser Sintering of Conductive Inks for Inkjet Printing Based on Nanoparticle Compositions with Organic Silver Salts. Russian Physics Journal, 2018, 60, 1674-1679.	0.4	6
7	Inkjet Printing of Organic Light-Emitting Diodes Based on Alcohol-Soluble Polyfluorenes. Russian Physics Journal, 2018, 60, 2236-2240.	0.4	5
8	Multilayer Light-Emitting Diodes Based on Organic Semiconductor Polymers. Russian Physics Journal, 2018, 61, 1541-1546.	0.4	2
9	Increase in the Lasing Efficiency of Thin-Film Lasers Based on 1.4- Distirylbenzene. Russian Physics Journal, 2018, 60, 2036-2039.	0.4	1
10	Modeling of the Process of Inkjet Printing of Low-Viscosity Liquids. Russian Physics Journal, 2019, 61, 1745-1751.	0.4	1
11	Special Features of Photo- and Electroluminescence of Zinc and Magnesium Complexes. Russian Physics Journal, 2020, 63, 1412-1416.	0.4	1
12	Promising Organic Active Media for Blue-Green Tunable Lasers. Russian Physics Journal, 2019, 61, 2058-2064.	0.4	0
13	Spectral-Luminescent and Electroluminescent Properties of Charge-transfer Systems Based On Electron-donating Diphenylamine Derivatives and Acceptors of Dibenzothiophene Sulfone and Phenanthridine. Journal of Fluorescence, 2021, 31, 1333-1342.	2.5	0