List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/705077/publications.pdf Version: 2024-02-01

	31902	30848
13,979	53	102
citations	h-index	g-index
413	413	5385
docs citations	times ranked	citing authors
	citations 413	13,979 53 citations h-index 413 413

#	Article	IF	CITATIONS
1	Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Materialia, 2015, 96, 258-268.	3.8	952
2	Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys. Advanced Engineering Materials, 2013, 15, 191-215.	1.6	840
3	Microstructural design of hard coatings. Progress in Materials Science, 2006, 51, 1032-1114.	16.0	793
4	Processing and Applications of Intermetallic γ-TiAl-Based Alloys. Advanced Engineering Materials, 2000, 2, 551-570.	1.6	537
5	Design of Novel βâ€5olidifying TiAl Alloys with Adjustable β/B2â€Phase Fraction and Excellent Hotâ€Workability. Advanced Engineering Materials, 2008, 10, 707-713.	1.6	357
6	Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase Î ³ -TiAl based alloy. Intermetallics, 2014, 44, 128-140.	1.8	329
7	Modeling concepts for intermetallic titanium aluminides. Progress in Materials Science, 2016, 81, 55-124.	16.0	304
8	Intermetallic titanium aluminides in aerospace applications – processing, microstructure and properties. Materials at High Temperatures, 2016, 33, 560-570.	0.5	187
9	Powder Metallurgical Processing of Intermetallic Gamma Titanium Aluminides. Advanced Engineering Materials, 2004, 6, 23-38.	1.6	181
10	High-Energy X-Rays: A tool for Advanced Bulk Investigations in Materials Science and Physics. Textures and Microstructures, 2003, 35, 219-252.	0.2	180
11	In and ex situ investigations of the β-phase in a Nb and Mo containing γ-TiAl based alloy. Intermetallics, 2008, 16, 827-833.	1.8	159
12	Intermetallic βâ€Solidifying γâ€TiAl Based Alloys â^ From Fundamental Research to Application. Advanced Engineering Materials, 2017, 19, 1600735.	1.6	156
13	Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness. Acta Materialia, 2014, 64, 241-252.	3.8	144
14	Sheet gamma TiAl: Status and opportunities. Jom, 2004, 56, 42-45.	0.9	142
15	Effect of carbon addition on solidification behavior, phase evolution and creep properties of an intermetallic Î ² -stabilized Î ³ -TiAl based alloy. Intermetallics, 2014, 46, 173-184.	1.8	139
16	Technology and mechanical properties of advanced Î ³ -TiAl based alloys. International Journal of Materials Research, 2009, 100, 1021-1030.	0.1	136
17	Microstructure development and hardness of a powder metallurgical multi phase Î ³ -TiAl based alloy. Intermetallics, 2012, 22, 231-240.	1.8	134
18	Light-Weight Intermetallic Titanium Aluminides – Status of Research and Development. Advanced Materials Research. 0, 278, 551-556.	0.3	133

#	Article	IF	CITATIONS
19	Grain refinement in γ-TiAl-based alloys by solid state phase transformations. Intermetallics, 2006, 14, 1380-1385.	1.8	118
20	Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 614, 297-310.	2.6	117
21	Deformation mechanisms in TiAl intermetallics—experiments and modeling. International Journal of Plasticity, 2003, 19, 281-321.	4.1	115
22	A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy, 2014, 144, 9-18.	0.8	107
23	Carbon distribution in multi-phase $\hat{1}^3$ -TiAl based alloys and its influence on mechanical properties and phase formation. Acta Materialia, 2015, 94, 205-213.	3.8	106
24	Phase fractions, transition and ordering temperatures in TiAl–Nb–Mo alloys: An in- and ex-situ study. Intermetallics, 2010, 18, 1544-1552.	1.8	99
25	Microstructures and mechanical properties of a multi-phase β-solidifying TiAl alloy densified by spark plasma sintering. Acta Materialia, 2014, 73, 107-115.	3.8	95
26	The high temperature oxidation behaviour of high and low alloyed TiAl-based intermetallics. Intermetallics, 2002, 10, 293-305.	1.8	87
27	High carbon solubility in a γ-TiAl-based Ti–45Al–5Nb–0.5C alloy and its effect on hardening. Acta Materialia, 2009, 57, 1504-1511.	3.8	86
28	Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures. Acta Materialia, 2017, 128, 440-450.	3.8	85
29	Electronic structure ofPbTePb1â [~] 'xSnxTeTe superlattices. Physical Review B, 1984, 30, 3394-3405.	1.1	81
30	Creep behaviour and related high temperature microstructural stability of Ti–46Al–9Nb sheet material. Intermetallics, 2005, 13, 515-524.	1.8	81
31	Recrystallization and phase transitions in a γ-TiAl-based alloy as observed by ex situ and in situ high-energy X-ray diffraction. Acta Materialia, 2006, 54, 3721-3735.	3.8	81
32	High-temperature oxidation behavior of multi-phase Mo-containing Î ³ -TiAl-based alloys. Intermetallics, 2014, 53, 45-55.	1.8	81
33	In Situ Experiments with Synchrotron Highâ€Energy Xâ€Rays and Neutrons. Advanced Engineering Materials, 2011, 13, 658-663.	1.6	80
34	Deformation behavior of differently processed γ-titanium aluminides. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 153-162.	2.6	79
35	Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing. Intermetallics, 2004, 12, 275-280.	1.8	78
36	Effect of hot rolling and primary annealing on the microstructure and texture of a β-stabilised γ-TiAl based alloy. Acta Materialia, 2017, 126, 145-153.	3.8	77

#	Article	IF	CITATIONS
37	Silicon distribution and silicide precipitation during annealing in an advanced multi-phase Î ³ -TiAl based alloy. Acta Materialia, 2016, 110, 236-245.	3.8	76
38	Microstructural evolution of Cr–Mn–N austenitic steels during cold work hardening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 427, 246-254.	2.6	75
39	Enhancement of creep properties and microstructural stability of intermetallic β-solidifying γ-TiAl based alloys. Intermetallics, 2015, 63, 19-26.	1.8	75
40	Metallurgical processing of titanium aluminides on industrial scale. Intermetallics, 2018, 103, 12-22.	1.8	72
41	Mechanical Size-Effects in Miniaturized and Bulk Materials. Advanced Engineering Materials, 2006, 8, 1033-1045.	1.6	70
42	Influence of reverted austenite on static and dynamic mechanical properties of a PH 13-8 Mo maraging steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2065-2070.	2.6	69
43	Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys. Materials and Design, 2017, 115, 479-485.	3.3	68
44	Diffusion bonding of γ-TiAl sheets. Intermetallics, 1999, 7, 1025-1031.	1.8	67
45	On the recrystallization behavior of technically pure molybdenum. International Journal of Refractory Metals and Hard Materials, 2010, 28, 703-708.	1.7	67
46	Phase transformations in high niobium and carbon containing Î ³ -TiAl based alloys. Intermetallics, 2006, 14, 1194-1198.	1.8	66
47	Nanometer-scaled lamellar microstructures in Ti–45Al–7.5Nb–(0; 0.5)C alloys and their influence on hardness. Intermetallics, 2008, 16, 868-875.	1.8	65
48	Comparison of NiAl precipitation in a medium carbon secondary hardening steel and C-free PH13-8 maraging steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 429, 96-106.	2.6	62
49	Experimental studies and thermodynamic simulation of phase transformations in high Nb containing γ-TiAl based alloys. International Journal of Materials Research, 2007, 98, 1131-1137.	0.1	62
50	Morphology change of retained austenite during austempering of carbide-free bainitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 664, 236-246.	2.6	59
51	Tailoring microstructure and chemical composition of advanced Î ³ -TiAl based alloys for improved creep resistance. Intermetallics, 2018, 97, 27-33.	1.8	59
52	Self-Organized Nanostructures in Hard Ceramic Coatings. Advanced Engineering Materials, 2005, 7, 1071-1082.	1.6	58
53	Diffusion bonding of intermetallic Ti-47Al-2Cr-0.2Si sheet material and mechanical properties of joints at room temperature and elevated temperatures. Intermetallics, 1997, 5, 415-423.	1.8	57
54	Investigation of metal foam formation by microscopy and ultra small-angle neutron scattering. Acta Materialia, 2001, 49, 3409-3420.	3.8	57

#	Article	IF	CITATIONS
55	Preferential site occupancy of alloying elements in TiAl-based phases. Journal of Applied Physics, 2016, 119, .	1.1	55
56	Experimental and theoretical evidence of displacive martensite in an intermetallic Mo-containing γ-TiAl based alloy. Acta Materialia, 2016, 115, 242-249.	3.8	55
57	Effect of microstructural instability on the creep resistance of an advanced intermetallic γ-TiAl based alloy. Intermetallics, 2017, 80, 1-9.	1.8	55
58	In-situ study of the time–temperature-transformation behaviour of a multi-phase intermetallic β-stabilised TiAl alloy. Intermetallics, 2015, 57, 17-24.	1.8	53
59	Microstructure and mechanical properties of Ti 45Al 5Nb+(0–0.5C) sheets. Intermetallics, 2008, 16, 689-697.	1.8	52
60	In Situ Characterization of a Nb and Mo Containing <i>γ</i> â€TiAl Based Alloy Using Neutron Diffraction and Highâ€Temperature Microscopy. Advanced Engineering Materials, 2009, 11, 932-937.	1.6	52
61	In situstudy of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy. Journal of Applied Physics, 2009, 106, 113526.	1.1	52
62	How grain boundary chemistry controls the fracture mode of molybdenum. Materials and Design, 2018, 142, 36-43.	3.3	52
63	Hotâ€wall epitaxy system for the growth of multilayer IVâ€VI compound heterostructures. Review of Scientific Instruments, 1983, 54, 685-689.	0.6	51
64	Designing advanced intermetallic titanium aluminide alloys for additive manufacturing. Intermetallics, 2021, 131, 107109.	1.8	51
65	Designed fully lamellar microstructures in a γ-TiAl based alloy: adjustment and microstructural changes upon long-term isothermal exposure at 700 and 800°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 124-129.	2.6	50
66	Grain boundary segregation engineering in as-sintered molybdenum for improved ductility. Scripta Materialia, 2018, 156, 60-63.	2.6	50
67	Microstructure evolution and mechanical properties of an intermetallic Ti-43.5Al-4Nb-1Mo-0.1B alloy after ageing below the eutectoid temperature. International Journal of Materials Research, 2011, 102, 703-708.	0.1	49
68	Structural characterization of "carbide-free―bainite in a Fe–0.2C–1.5Si–2.5Mn steel. Materials Characterization, 2015, 102, 85-91.	1.9	49
69	Optimizing the properties of TiAl sheet material for application in heat protection shields or propulsion systems. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 201, 182-193.	2.6	48
70	On the Formation of Ordered ωâ€phase in High Nb Containing γâ€TiAl Based Alloys. Advanced Engineering Materials, 2008, 10, 929-934.	1.6	48
71	Characteristics of the tensile flow behavior of Ti–46Al–9Nb sheet material – Analysis of thermally activated processes of plastic deformation. Intermetallics, 2008, 16, 717-726.	1.8	48
72	Spinodal decomposition of cubic Ti _{1â^'<i>x</i>} Al _{<i>x</i>} N: Comparison between experiments and modeling. International Journal of Materials Research, 2007, 98, 1054-1059.	0.1	47

#	Article	IF	CITATIONS
73	Effect of heat-treatments and hot-isostatic pressing on phase transformation and microstructure in a β/B2 containing γ-TiAl based alloy. Scripta Materialia, 2000, 42, 1065-1070.	2.6	46
74	On grain boundary segregation in molybdenum materials. Materials and Design, 2017, 135, 204-212.	3.3	46
75	Microstructural stability and creep behavior of a lamellar Î ³ -TiAl based alloy with extremely fine lamellar spacing. Intermetallics, 2002, 10, 459-466.	1.8	45
76	The high-temperature oxidation behaviour of Ti-47Al-2Cr-0.2Si and Ti-48Al-2Cr-2Nb compared with Ti-48Al-2Cr. Intermetallics, 1997, 5, 525-534.	1.8	44
77	In situ high-energy X-ray diffraction study and quantitative phase analysis in the α+γ phase field of titanium aluminides. Scripta Materialia, 2007, 57, 1145-1148.	2.6	44
78	Fracture and R-curve behavior of an intermetallic β-stabilized TiAl alloy with different nearly lamellar microstructures. Intermetallics, 2014, 53, 1-9.	1.8	44
79	Phase transformations in a β-solidifying γ-TiAl based alloy during rapid solidification. Intermetallics, 2017, 91, 100-109.	1.8	44
80	Small-angle neutron scattering analysis of the precipitation behaviour in a maraging steel. Journal of Applied Crystallography, 2003, 36, 415-419.	1.9	43
81	Advancement of Compositional and Microstructural Design of Intermetallic Î ³ -TiAl Based Alloys Determined by Atom Probe Tomography. Materials, 2016, 9, 755.	1.3	43
82	Lattice and phase strain evolution during tensile loading of an intermetallic, multi-phase γ-TiAl based alloy. Acta Materialia, 2018, 158, 193-205.	3.8	43
83	γ α2 B2 Lamellar Domains in Rolled TiAl. Scripta Materialia, 1998, 38, 1377-1382.	2.6	42
84	Mechanical twins, their development and growth. European Journal of Mechanics, A/Solids, 2003, 22, 709-726.	2.1	42
85	Evolution of microstructure and texture in Ti–46Al–9Nb sheet material during tensile flow at elevated temperatures. Intermetallics, 2010, 18, 1046-1055.	1.8	42
86	Texture evolution of the γ- and the α/α2-phase during hot rolling of γ-TiAl based alloys. Intermetallics, 2006, 14, 336-347.	1.8	41
87	Textural Evolution During Dynamic Recovery and Static Recrystallization of Molybdenum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4794-4805.	1.1	41
88	Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation. Journal of Materials Research, 2017, 32, 2658-2667.	1.2	40
89	The Characterisation of a Powder Metallurgically Manufactured TNMâ,,¢ Titanium Aluminide Alloy Using Complimentary Quantitative Methods. Praktische Metallographie/Practical Metallography, 2011, 48, 594-604.	0.1	40
90	A thermodynamical model for the nucleation of mechanical twins in TiAl. Acta Materialia, 2003, 51, 1249-1260.	3.8	39

#	Article	IF	CITATIONS
91	An in-situ high-energy X-ray diffraction study on the hot-deformation behavior ofÂa β-phase containing TiAl alloy. Intermetallics, 2013, 39, 25-33.	1.8	39
92	High-temperature mechanical properties of hot isostatically pressed and forged gamma titanium aluminide alloy powder. Intermetallics, 2002, 10, 511-517.	1.8	38
93	Deformation mechanisms in micron-sized PST TiAl compression samples: Experiment and model. Acta Materialia, 2011, 59, 3410-3421.	3.8	38
94	Characterization of the high temperature deformation behavior of two intermetallic TiAl–Mo alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 208-216.	2.6	38
95	Phase transition and ordering behavior of ternary Ti–Al–Mo alloys using in-situ neutron diffraction. International Journal of Materials Research, 2011, 102, 697-702.	0.1	37
96	Grain boundary segregation in Ni-base alloys: A combined atom probe tomography and first principles study. Acta Materialia, 2021, 221, 117354.	3.8	37
97	Physics and applications of IV-VI compound quantum well and superlattice structures. Semiconductor Science and Technology, 1990, 5, S122-S130.	1.0	36
98	Precipitation twinning. Acta Materialia, 2007, 55, 4915-4923.	3.8	36
99	Interplay between effect of Mo and chemical disorder on the stability of β/βo-TiAl phase. Intermetallics, 2015, 61, 85-90.	1.8	36
100	Grain boundary study of technically pure molybdenum by combining APT and TKD. Ultramicroscopy, 2015, 159, 445-451.	0.8	36
101	Characterization of Tiî—,48Alî—,2Cr sheet material. Intermetallics, 1994, 2, 179-184.	1.8	35
102	Creep behavior of Î ³ -TiAl sheet material with differently spaced fully lamellar microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 840-846.	2.6	35
103	An Advanced TiAl Alloy for High-Performance Racing Applications. Materials, 2020, 13, 4720.	1.3	35
104	On the origin of acoustic emission during room temperature compressive deformation of a $\hat{1}^3$ -TiAl based alloy. Intermetallics, 2000, 8, 823-830.	1.8	34
105	In Situ Diffraction Experiments for the Investigation of Phase Fractions and Ordering Temperatures in Tiâ€44 at% Alâ€(3â€7) at% Mo Alloys. Advanced Engineering Materials, 2011, 13, 306-311.	1.6	34
106	The Contribution of Highâ€Energy Xâ€Rays and Neutrons to Characterization and Development of Intermetallic Titanium Aluminides. Advanced Engineering Materials, 2011, 13, 685-699.	1.6	34
107	Fatigue threshold and crack propagation in Î ³ -TiAl sheets. Intermetallics, 2001, 9, 89-96.	1.8	33
108	Precipitation Behaviour of a Complex Steel. Advanced Engineering Materials, 2006, 8, 1066-1077.	1.6	33

#	Article	IF	CITATIONS
109	Influence of the heating rate on the recrystallization behavior of molybdenum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 535, 316-324.	2.6	32
110	In Situ Characterization Techniques Based on Synchrotron Radiation and Neutrons Applied for the Development of an Engineering Intermetallic Titanium Aluminide Alloy. Metals, 2016, 6, 10.	1.0	31
111	Analysis of the precipitation behaviour in a high-speed steel by means of small-angle neutron scattering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 398, 323-331.	2.6	30
112	Orientation dependent recovery and recrystallization behavior of hot-rolled molybdenum. International Journal of Refractory Metals and Hard Materials, 2015, 48, 179-186.	1.7	30
113	Induction Tempering vs Conventional Tempering of a Heat-Treatable Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3694-3702.	1.1	30
114	Influence of Heat Treatments on the Microstructure of a Multi-Phase Titanium Aluminide Alloy. Praktische Metallographie/Practical Metallography, 2012, 49, 124-137.	0.1	30
115	Quench rate sensitivity of age-hardenable Al-Zn-Mg-Cu alloys with respect to the Zn/Mg ratio: An in situ SAXS and HEXRD study. Acta Materialia, 2022, 227, 117727.	3.8	30
116	Magnetooptical investigation of PbTe/Pb1â ``xSnxTe superlattices. Superlattices and Microstructures, 1985, 1, 1-9.	1.4	29
117	Characterization of residual stresses in turbine discs by neutron and high-energy X-ray diffraction and comparison to finite element modeling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 437, 75-82.	2.6	29
118	Microstructure and Texture Formation during Hot Rolling of Niobium-Rich Î ³ TiAl Alloys with Different Carbon Contents. Advanced Engineering Materials, 2006, 8, 1101-1108.	1.6	29
119	On the evolution of secondary hardening carbides during continuous versus isothermal heat treatment of high speed steel HS 6-5-2. Materials Characterization, 2016, 120, 323-330.	1.9	29
120	An energy approach to the formation of twins in TiAl. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 2827-2836.	1.1	28
121	Design and control of microstructure and texture by thermomechanical processing of a multi-phase TiAl alloy. Materials and Design, 2017, 131, 286-296.	3.3	28
122	In situ and atomic-scale investigations of the early stages of Î ³ precipitate growth in a supersaturated intermetallic Ti-44Al-7Mo (at.%) solid solution. Acta Materialia, 2019, 164, 110-121.	3.8	28
123	Processing, Properties and Applications of Gamma Titanium Aluminide Sheet and Foil Materials. Materials Research Society Symposia Proceedings, 1996, 460, 29.	0.1	27
124	Internal friction of Î ³ -TiAl alloys at high temperature. Journal of Alloys and Compounds, 2000, 310, 134-138.	2.8	27
125	Production, Processing and Application of \hat{I}^3 (TiAl)-Based Alloys. , 2005, , 351-392.		27
126	Electron Beam Melting of a βâ€Solidifying Intermetallic Titanium Aluminide Alloy. Advanced Engineering Materials, 2019, 21, 1900800.	1.6	27

#	Article	IF	CITATIONS
127	Interfaces in nanostructured thin films and their influence on hardness. International Journal of Materials Research, 2005, 96, 468-480.	0.8	26
128	The influence of spin-misalignment scattering on the SANS data evaluation of martensitic age-hardening steels. Acta Materialia, 2007, 55, 2637-2646.	3.8	26
129	On the influence of coating and oxidation on the mechanical properties of a $\hat{1}^3$ -TiAl based alloy. Intermetallics, 2008, 16, 1206-1211.	1.8	26
130	Precipitation behaviour of an Fe–Co–Mo-alloy during non-isothermal ageing. International Journal of Materials Research, 2008, 99, 367-374.	0.1	26
131	Study of nanometer-scaled lamellar microstructure in a Ti–45Al–7.5Nb alloy – Experiments and modeling. Intermetallics, 2010, 18, 509-517.	1.8	26
132	Influence of process parameter variation during thermo-mechanical processing of an intermetallic β-stabilized γ-TiAl based alloy. Materials Characterization, 2015, 109, 116-121.	1.9	26
133	Directional Atomic Rearrangements During Transformations Between the α―and γâ€₽hases in Titanium Aluminides. Advanced Engineering Materials, 2008, 10, 389-392.	1.6	25
134	In situ small-angle X-ray scattering study of the perovskite-type carbide precipitation behavior in a carbon-containing intermetallic TiAl alloy using synchrotron radiation. Acta Materialia, 2014, 77, 360-369.	3.8	25
135	Atomic relaxation processes in an intermetallic Ti–43Al–4Nb–1Mo–0.1B alloy studied by mechanical spectroscopy. Acta Materialia, 2014, 65, 338-350.	3.8	25
136	Impact of the B2 ordering behavior on the mechanical properties of a FeCoMo alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 511-518.	2.6	25
137	Impact of Alloying on Stacking Fault Energies in Î ³ -TiAl. Applied Sciences (Switzerland), 2017, 7, 1193.	1.3	25
138	Anomalous transport in PbTe doping superlattices. Applied Physics Letters, 1985, 47, 738-740.	1.5	23
139	Precipitation behavior of intermetallic NiAl particles in Fe-6Âat.%Al-4Âat.%Ni analyzed by SANS and 3DAP. Intermetallics, 2010, 18, 1553-1559.	1.8	23
140	Advanced Intermetallic TiAl Alloys. Materials Science Forum, 0, 879, 113-118.	0.3	23
141	High-temperature phenomena in an advanced intermetallic nano-lamellar γ-TiAl-based alloy. Part I: Internal friction and atomic relaxation processes. Acta Materialia, 2020, 200, 442-454.	3.8	23
142	Growth and characterization of PbTe epitaxial films grown by hot-wall epitaxy. Journal of Crystal Growth, 1984, 66, 251-256.	0.7	22
143	Determination of the diffusion coefficient of hydrogen in gamma titanium aluminides during electrolytic charging. Acta Materialia, 2000, 48, 1005-1019.	3.8	22
144	On the role of twinning during room temperature deformation of γ-TiAl based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 177-183.	2.6	22

#	Article	IF	CITATIONS
145	The high-temperature damping background in intermetallic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 138-141.	2.6	22
146	Characteristics of an optimized active metal cast joint between copper and C/C. Physica Scripta, 2007, T128, 200-203.	1.2	22
147	Microstructure evolution induced by the intrinsic heat treatment occurring during wire-arc additive manufacturing of an Al-Mg-Zn-Cu crossover alloy. Materials Letters, 2021, 303, 130500.	1.3	22
148	How electron beam melting tailors the Al-sensitive microstructure and mechanical response of a novel process-adapted <mml:math altimg="si53.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:math altimg="si53.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:math altimg="si53.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"></mml:math>-TiAl based alloy. Materials and Design, 2021, 212, 110187.</mml:math></mml:math>	3.3	22
149	Internal friction of γ-TiAl-based alloys with different microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 370, 234-239.	2.6	21
150	On the development of grain growth resistant tantalum alloys. International Journal of Refractory Metals and Hard Materials, 2006, 24, 437-444.	1.7	21
151	Impact of Mo on the ω o phase in β -solidifying TiAl alloys: An experimental and computational approach. Intermetallics, 2017, 85, 26-33.	1.8	21
152	Microstructure and mechanical properties of novel TiAl alloys tailored via phase and precipitate morphology. Intermetallics, 2021, 138, 107316.	1.8	21
153	Forming. , 2002, , 617-642.		20
154	Spinodal decomposition in Fe-25Âat%Co-9Âat%Mo. Intermetallics, 2010, 18, 2128-2135.	1.8	20
155	Induction Hardening vs Conventional Hardening of a Heat Treatable Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5657-5666.	1.1	20
156	The creep behavior of a fully lamellar Î ³ -TiAl based alloy. Intermetallics, 2019, 114, 106611.	1.8	20
157	Effects of tungsten alloying and fluorination on the oxidation behavior of intermetallic titanium aluminides for aerospace applications. Intermetallics, 2021, 139, 107270.	1.8	20
158	On the Formation Mechanism of Banded Microstructures in Electron Beam Melted Ti–48Al–2Cr–2Nb and the Design of Heat Treatments as Remedial Action. Advanced Engineering Materials, 2021, 23, 2101199.	1.6	20
159	SANS investigation of precipitation hardening of two-phase ?-TiAl alloys. Applied Physics A: Materials Science and Processing, 2002, 74, s1163-s1165.	1.1	19
160	Physical metallurgy of high Nb-containing TiAl alloys. International Journal of Materials Research, 2004, 95, 585-591.	0.8	19
161	Combining complementary techniques to study precipitates in steels. International Journal of Materials Research, 2005, 96, 1074-1080.	0.8	19
162	Grain Growth and β to α Transformation Behavior of a β‣olidifying TiAl Alloy. Advanced Engineering Materials, 2015, 17, 786-790.	1.6	19

#	Article	IF	CITATIONS
163	On the chemistry of the carbides in a molybdenum base Mo-Hf-C alloy produced by powder metallurgy. Journal of Alloys and Compounds, 2016, 654, 445-454.	2.8	19
164	High-resolution characterization of the martensite-austenite constituent in a carbide-free bainitic steel. Materials Characterization, 2018, 144, 182-190.	1.9	19
165	Influence of crystal orientation and Berkovich tip rotation on the mechanical characterization of grain boundaries in molybdenum. Materials and Design, 2019, 182, 107998.	3.3	19
166	Microstructural Evolution and Mechanical Properties of an Advanced Î ³ -TiAl Based Alloy Processed by Spark Plasma Sintering. Materials, 2019, 12, 1523.	1.3	19
167	Characterization of controlled microstructures in a γ-TiAl(Cr, Mo, Si, B) alloy. Intermetallics, 1999, 7, 1081-1087.	1.8	18
168	Phase stability of a γ-TiAl based alloy upon annealing: comparison between experiment and thermodynamic calculations. Scripta Materialia, 2003, 49, 279-284.	2.6	18
169	Internal stress measurements by high-energy synchrotron X-ray diffraction at increased specimen-detector distance. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 315-322.	0.6	18
170	Neutron diffraction study of texture development during hot working of different gamma-titanium aluminide alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 3563-3579.	1.1	18
171	Numerical Modelling of Kinking in Lamellar γ-TiAl Based Alloys. Advanced Engineering Materials, 2006, 8, 1109-1113.	1.6	18
172	Phase Equilibria and Phase Transformations in Molybdenum-Containing TiAl Alloys. Materials Research Society Symposia Proceedings, 2011, 1295, 113.	0.1	18
173	In Situ Synchrotron Study of B19 Phase Formation in an Intermetallic γâ€ī iAl Alloy. Advanced Engineering Materials, 2012, 14, 445-448.	1.6	18
174	Microstructural evolution and grain refinement in an intermetallic titanium aluminide alloy with a high molybdenum content. International Journal of Materials Research, 2015, 106, 725-731.	0.1	18
175	Heat Treatments and Critical Quenching Rates in Additively Manufactured Al–Si–Mg Alloys. Materials, 2020, 13, 720.	1.3	18
176	Spin resonant optical four wave mixing in Pb1â^'xSnxTTe epitaxial layers and in Pb1â^'xSnx/PbTe superlattices. Solid State Communications, 1985, 55, 765-768.	0.9	17
177	Interdiffusion in Pb1â^'xEuxSe/PbSe multi-quantum-well structures. Journal of Crystal Growth, 1991, 113, 593-598.	0.7	17
178	Protection of Nb- and Ta-based alloys against high temperature oxidation. International Journal of Refractory Metals and Hard Materials, 1993, 12, 283-293.	1.7	17
179	Tensile properties and strain rate sensitivity of Ti-47Al-2Cr-0.2Si sheet material with different microstructures. Scripta Materialia, 1996, 35, 429-434.	2.6	17
180	On the overaging behaviour of tool steel X38 CrMoV 5-3. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 472, 148-156.	2.6	17

#	Article	IF	CITATIONS
181	Internal friction and atomic relaxation processes in an intermetallic Mo-rich Ti-44Al-7Mo (γ+βo) model alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 495-502.	2.6	17
182	Pathways of phase transformation in Î ² -phase-stabilized Ï $f/$ Î ³ -TiAl alloys subjected to two-step heat treatments. Scripta Materialia, 2018, 149, 70-74.	2.6	17
183	Laser powder bed fusion of an engineering intermetallic TiAl alloy. Materials and Design, 2021, 201, 109506.	3.3	17
184	Intermetallic Titanium Aluminides as Innovative High Temperature Lightweight Structural Materials – How Materialographic Methods Have Contributed to Their Development. Praktische Metallographie/Practical Metallography, 2015, 52, 691-721.	0.1	17
185	Epitaxial growth of PbTe on (111)BaF2 and (100)GaAs. Superlattices and Microstructures, 1988, 4, 591-596.	1.4	16
186	Biological Multi-layer Systems as Implant Surface Modification. Materialwissenschaft Und Werkstofftechnik, 2003, 34, 1084-1093.	0.5	16
187	Structural and electronic properties of PbTe/Pb1â^'xSnxTe superlattices. Surface Science, 1984, 142, 571-578.	0.8	15
188	Combined use of small-angle neutron scattering and atom probe tomography for the analysis of precipitates in a Fe-15 m% Co-25Âm%ÂMo alloy. Applied Physics A: Materials Science and Processing, 2009, 97, 331-340.	1.1	15
189	Metallurgie, Gefüge und Eigenschaften von intermetallischen TiAl Ingots. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2010, 155, 325-329.	0.4	15
190	Precipitation Behavior of Fe-25ÂAt. Pct Co-9ÂAt. Pct Mo Investigated by In-Situ Small-Angle Neutron Scattering and Complementary Methods. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1230-1234.	1.1	15
191	Advanced Titanium Aluminides - How to Improve the Creep Resistance via Compositional and Microstructural Optimization. Materials Science Forum, 2018, 941, 1484-1489.	0.3	15
192	Selective Laser Melting of a Nearâ€Î± Ti6242S Alloy for Highâ€Performance Automotive Parts. Advanced Engineering Materials, 2021, 23, 2001194.	1.6	15
193	Aspects of Powder Characterization for Additive Manufacturing. Praktische Metallographie/Practical Metallography, 2018, 55, 620-636.	0.1	15
194	Interdiffusion in diluted magnetic PbTe/Pb1â^'xMnxTe quantum well structures. Journal of Applied Physics, 1992, 72, 97-106.	1.1	14
195	Kinetics of Precipitation in a Complex Hotâ€work Tool Steel. Steel Research International, 2010, 81, 64-73.	1.0	14
196	Elastoplastic buckling as source of misinterpretation of micropillar tests. Acta Materialia, 2013, 61, 4996-5007.	3.8	14
197	Diffusive and massive phase transformations in Ti–Al–Nb alloys – Modelling and experiments. Intermetallics, 2013, 38, 126-138.	1.8	14
198	Fracture Behavior and Delamination Toughening of Molybdenum in Charpy Impact Tests. Jom, 2016, 68, 2854-2863.	0.9	14

#	Article	IF	CITATIONS
199	An Additively Manufactured Titanium Alloy in the Focus of Metallography. Praktische Metallographie/Practical Metallography, 2021, 58, 4-31.	0.1	14
200	In-situ observation of the phase evolution during an electromagnetic-assisted sintering experiment of an intermetallic Î ³ -TiAl based alloy. Scripta Materialia, 2022, 206, 114233.	2.6	14
201	Intermetallische Æ"-Titanaluminid-Basislegierungen aus metallographischer Sicht / Intermetallic Æ"-Titanium Aluminide Based Alloys from a Metallographic Point of View. Praktische Metallographie/Practical Metallography, 2000, 37, 194-217.	0.1	14
202	High vacuum molecular beam epitaxy for the growth of IV–VI compounds. Journal of Crystal Growth, 1993, 126, 293-304.	0.7	13
203	Experimental Studies and Thermodynamic Simulations of Phase Transformations in Ti-(41-45)Al-4Nb-1Mo-0.1B Alloys. Materials Research Society Symposia Proceedings, 2008, 1128, 30601.	0.1	13
204	Correlation between heat treatment, microstructure and mechanical properties of a hot-work tool steel. International Journal of Materials Research, 2009, 100, 86-91.	0.1	13
205	Evidence of an orthorhombic transition phase in a Ti-44Al-3Mo (at.%) alloy using in situ synchrotron diffraction and transmission electron microscopy. Materials Characterization, 2019, 147, 398-405.	1.9	13
206	In situ fracture observations of distinct interface types within a fully lamellar intermetallic TiAl alloy. Journal of Materials Research, 2021, 36, 2465-2478.	1.2	13
207	Optical investigations of superlattices. Surface Science, 1986, 170, 657-664.	0.8	12
208	Photoconductive response of PbTe doping superlattices. Applied Physics Letters, 1987, 50, 1654-1656.	1.5	12
209	Epitaxial growth of Pb1â^'xGexTe films and of PbTe/Pb1â^'xGexTe superlattices. Journal of Crystal Growth, 1987, 84, 571-576.	0.7	12
210	Growth of PbTe/Pb1â^'xMnxTe quantum well structures by molecularâ€beam epitaxy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 3197-3199.	0.9	12
211	Residual stresses in forged IN718 turbine discs. International Journal of Materials Research, 2004, 95, 663-667.	0.8	12
212	Experimental Studies of Phase Transformations in a Carbon Containing Ti-45Al-7.5Nb Alloy and Related Thermodynamic Simulations. Advanced Engineering Materials, 2005, 7, 1131-1134.	1.6	12
213	In Situ Study of γâ€TiAl Lamellae Formation in Supersaturated α ₂ â€Ti ₃ Al Grains. Advanced Engineering Materials, 2012, 14, 299-303.	1.6	12
214	3 <scp>D</scp> Characterization of an Intermetallic β/γâ€ <scp>T</scp> itanium Aluminide Alloy. Advanced Engineering Materials, 2013, 15, 1125-1128.	1.6	12
215	Thermal Expansion and Other Thermodynamic Properties of α2-Ti3Al and γ-TiAl Intermetallic Phases from First Principles Methods. Materials, 2019, 12, 1292.	1.3	12
216	In-vitro interactions of human chondrocytes and mesenchymal stem cells, and of mouse macrophages with phospholipid-covered metallic implant materials. , 2007, 13, 11-25.		12

#	Article	IF	CITATIONS
217	Epitaxial growth of PbTe on (100) GaAs substrates. Materials Letters, 1988, 7, 127-130.	1.3	11
218	Precipitation reactions during the early stages of aging in a Ni and Al alloyed martensitic medium carbon steel. Surface and Interface Analysis, 2007, 39, 213-220.	0.8	11
219	Methods to determine the joint strength of C/C to copper joints. Fusion Engineering and Design, 2007, 82, 1786-1792.	1.0	11
220	Analysis of the multistage phase separation reaction in Fe–25 at%Co–9 at%Mo. Physica Status Solid Applications and Materials Science, 2010, 207, 2238-2246.	li (A) 0.8	11
221	Near Conventional Forging of an Advanced TiAl Alloy. Materials Research Society Symposia Proceedings, 2012, 1516, 23-28.	0.1	11
222	Influence of Heat Treatment on Microstructure Stability and Mechanical Properties of a Carbideâ€Free Bainitic Steel. Advanced Engineering Materials, 2017, 19, 1600658.	1.6	11
223	Herstellung lamellarer Gefügetypen in intermetallischen TiAl- Legierungen und deren Charakterisierung. Praktische Metallographie/Practical Metallography, 2007, 44, 430-442.	0.1	11
224	Intermetallische γ-Titanaluminid-Basislegierungen aus metallographischer Sicht – eine Fortsetzung. Praktische Metallographie/Practical Metallography, 2011, 48, 64-100.	0.1	11
225	Mechanical spectroscopy of a high-Nb-bearing ^{î3} -TiAl-based alloy with near-gamma and fully lamellar microstructure. Philosophical Magazine Letters, 2004, 84, 383-393.	0.5	10
226	Computational analysis of the precipitation kinetics in a complex tool steel. International Journal of Materials Research, 2008, 99, 410-415.	0.1	10
227	Phase Transition and Ordering Temperatures of TiAl-Mo Alloys Investigated by <i>In Situ</i> Diffraction Experiments. Materials Science Forum, 2010, 654-656, 456-459.	0.3	10
228	Mechanical Spectroscopy in Advanced TiAl-Nb-Mo Alloys at High Temperature. Materials Research Society Symposia Proceedings, 2011, 1295, 139.	0.1	10
229	Thermodynamic Calculations of Phase Equilibria and Phase Fractions of a β-Solidifying TiAl Alloy using the CALPHAD Approach. Materials Research Society Symposia Proceedings, 2012, 1516, 59-64.	0.1	10
230	Microstructure and Texture Evolution in an Intermetallic β‣tabilized Ti <scp>A</scp> I Alloy During Forging and Subsequent Isothermal Annealing. Advanced Engineering Materials, 2014, 16, 445-451.	1.6	10
231	Evolution of strain-induced hafnium carbides in a molybdenum base Mo–Hf–C alloy studied by small-angle neutron scattering and complementary methods. Journal of Alloys and Compounds, 2016, 688, 619-631.	2.8	10
232	Novel intermetallic-reinforced near-α Ti alloys manufactured by spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139798.	2.6	10
233	Selected Methods of Quantitative Phase Analysis of an Additively Manufactured TNM Titanium Aluminide Alloy. Praktische Metallographie/Practical Metallography, 2019, 56, 220-229.	0.1	10
234	Metallography of Intermetallic Titanium Aluminides – the (Additive) Manufacturing Makes the Difference. Praktische Metallographie/Practical Metallography, 2019, 56, 567-584.	0.1	10

#	Article	IF	CITATIONS
235	Growth of PbTe doping superlattices by hot wall epitaxy. Journal of Crystal Growth, 1988, 88, 236-240.	0.7	9
236	Mechanical Anisotropy in Sheets of γ-TiAl Alloys. Materials Research Society Symposia Proceedings, 1996, 460, 141.	0.1	9
237	Computational Modeling and Experimental Study of the Deformation Behavior of γ-TiAl-Based Alloys. Advanced Engineering Materials, 2000, 2, 662-666.	1.6	9
238	Characterization of Residual Stresses in Compressor Discs for Aeroengines. Advanced Engineering Materials, 2006, 8, 1088-1092.	1.6	9
239	Compressive deformation of lamellar microstructures – a short review. International Journal of Materials Research, 2007, 98, 1041-1046.	0.1	9
240	On the evolution of secondary hardening carbides in a high-speed steel characterised by APFIM and SANS. International Journal of Materials Research, 2007, 98, 1093-1103.	0.1	9
241	On Phase Equilibria and Phase Transformations in β/γ-TiAl Alloys – A Short Review. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2011, 156, 438-442.	0.4	9
242	Advanced β-Solidifying Titanium Aluminides – Development Status and Perspectives. Materials Research Society Symposia Proceedings, 2013, 1516, 3-16.	0.1	9
243	Correlative microscopy of a carbide-free bainitic steel. Micron, 2016, 81, 1-7.	1.1	9
244	A Modified Electrochemical Nanoindentation Setup for Probing Hydrogen-Material Interaction Demonstrated on a Nickel-Based Alloy. Jom, 2020, 72, 2020-2029.	0.9	9
245	Exploring Structural Changes, Manufacturing, Joining, and Repair of Intermetallic γâ€TiAlâ€Based Alloys: Recent Progress Enabled by In Situ Synchrotron Xâ€Ray Techniques. Advanced Engineering Materials, 2021, 23, 2000947.	1.6	9
246	Influence of Nb on Ti diffusion in γ-TiAl intermetallics studied by mechanical spectroscopy. Journal of Alloys and Compounds, 2021, 867, 158880.	2.8	9
247	Rate-depending plastic deformation behaviour in a nickel-base alloy under hydrogen influence. International Journal of Hydrogen Energy, 2021, 46, 38132-38143.	3.8	9
248	X-Ray Strain Measurements in IV–VI-Semiconductor Superlattices at Low Temperature. , 1984, , 171-178.		9
249	SEM and TEM Investigations of Recovery and Recrystallization in Technically Pure Molybdenum. Praktische Metallographie/Practical Metallography, 2011, 48, 344-355.	0.1	9
250	Magnetooptical properties of PbTe doping superlattices. European Physical Journal B, 1987, 67, 475-481.	0.6	8
251	Thermal-cycling creep of Î ³ -TiAl-based alloys. Intermetallics, 2000, 8, 339-343.	1.8	8
252	Adjustment of Differently Spaced Fully Lamellar Microstructures in a γ-TiAl Based Alloy and their Creep Behaviour. , 2006. , 233-239.		8

Behaviour. , 2006, , 233-239.

#	Article	IF	CITATIONS
253	In-situ small-angle X-ray scattering study of the precipitation behavior in a Fe-25Âat.%Co-9Âat.%Mo alloy. Materials Characterization, 2008, 59, 1809-1813.	1.9	8
254	Development Status, Applications and Perspectives of Advanced Intermetallic Titanium Aluminides. Materials Science Forum, 0, 783-786, 15-20.	0.3	8
255	In Situ Investigation of the Rapid Solidification Behavior of Intermetallic γâ€TiAlâ€Based Alloys Using Highâ€Energy Xâ€Ray Diffraction. Advanced Engineering Materials, 2021, 23, 2100557.	1.6	8
256	Assessment of grain boundary cohesion of technically pure and boron micro-doped molybdenum via meso-scale three-point-bending experiments. Materials and Design, 2021, 207, 109848.	3.3	8
257	PbTe-doping superlattices?A new type of high sensitivity infrared detector. European Physical Journal B, 1987, 67, 467-473.	0.6	7
258	Growth of BaF2and of BaF2/SrF2layers on (001)â€oriented GaAs. Journal of Applied Physics, 1989, 66, 1680-1686.	1.1	7
259	Interpretation of photoluminescence spectra in partially interdiffused superlattices. Superlattices and Microstructures, 1989, 5, 93-98.	1.4	7
260	Growth and characterization of dilute magnetic PbTe/Pb1â^'xMnxTe superlattices. Surface Science, 1990, 228, 236-239.	0.8	7
261	Strain Rate Dependence of the Deformation Mechanisms in a Fully Lamellar Î ³ -TiAl-Based Alloy. International Journal of Materials Research, 2002, 93, 180-185.	0.8	7
262	Ausscheidungscharakterisierung in einer Fe-Co-Mo Legierung mittels komplementÃær Methoden. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2008, 153, 247-252.	0.4	7
263	Short-term Creep Behavior of an X 37 Cr Mo V 5-1 Hot-work Tool Steel with almost Bainitic and fully Martensitic Microstructures. Steel Research International, 2010, 81, 569-575.	1.0	7
264	Can local hot spots induce α2/γ lamellae during incomplete massive transformation of γ-TiAl alloys?. Intermetallics, 2010, 18, 972-976.	1.8	7
265	Thermodynamic description of niobium-rich γ-TiAl alloys. International Journal of Materials Research, 2011, 102, 692-696.	0.1	7
266	Optimized Hot-forming of an Intermetallic Multi-phase Î ³ -TiAl Based Alloy. Materials Research Society Symposia Proceedings, 2012, 1516, 29-34.	0.1	7
267	New findings on the atomistic mechanisms active during mechanical milling of a Fe-Y2O3model alloy. Journal of Applied Physics, 2014, 115, 124313.	1.1	7
268	Constitutive Analysis and Microstructure Evolution of the High-Temperature Deformation Behavior of an Advanced Intermetallic Multi-Phase γ-TiAl-Based Alloy. Advanced Materials Research, 0, 922, 807-812.	0.3	7
269	Martensitic Transformation of a High-speed Tool Steel During Continuous Heat Treatment. Materials Today: Proceedings, 2015, 2, S635-S638.	0.9	7
270	Crack Initiation and Crack Growth Resistance of Ti-48Al-2Cr Sheet Material. Scripta Materialia, 1998, 38, 1041-1049.	2.6	6

#	Article	lF	CITATIONS
271	Characterisation of precipitates in a stainless maraging steel by three-dimensional atom probe and small-angle neutron scattering. International Journal of Materials Research, 2004, 95, 644-649.	0.8	6
272	Continuum Mechanics of Deformation Twinning – A Review. Multidiscipline Modeling in Materials and Structures, 2006, 2, 167-187.	0.6	6
273	Microstructure and Texture Formation During Near Conventional Forging of an Intermetallic Ti–45Al–5Nb Alloy. Advanced Engineering Materials, 2009, 11, 976-981.	1.6	6
274	Texture Formation during Hot-Deformation of High-Nb Containing Î ³ -TiAl Based Alloys. Solid State Phenomena, 0, 160, 301-306.	0.3	6
275	In Situ High-Energy XRD Study of the Hot-Deformation Behavior of a Novel γ-TiAl Alloy. Materials Research Society Symposia Proceedings, 2012, 1516, 71-76.	0.1	6
276	The Use of <i>In Situ</i> Characterization Techniques for the Development of Intermetallic Titanium Aluminides. Materials Science Forum, 0, 783-786, 2097-2102.	0.3	6
277	Atom Probe Tomography of Carbides Occurring in "Carbide-free―Bainitic Steels. Materials Today: Proceedings, 2015, 2, S925-S928.	0.9	6
278	Non-equilibrium solid solution of molybdenum and sodium: Atomic scale experimental and first principles studies. Acta Materialia, 2018, 144, 700-706.	3.8	6
279	High Temperature Laser-Scanning Confocal Microscopy for the in-situ Investigation of Grain Growth and Phase Transformations in Intermetallic γ-TiAl based Alloys. Praktische Metallographie/Practical Metallography, 2015, 52, 259-269.	0.1	6
280	Microstructural and Phase Analysis of an Additively Manufactured Intermetallic TiAl Alloy using Metallographic Techniques and High-Energy X-Rays. Praktische Metallographie/Practical Metallography, 2020, 57, 84-95.	0.1	6
281	Tensile Properties and Deformation Mechanisms in Two-Phase Titanium Aluminide Sheet Material. Materials Research Society Symposia Proceedings, 1996, 460, 195.	0.1	5
282	On the texture of spray formed gamma titanium aluminide. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 416, 11-17.	2.6	5
283	Structure Models of Massively Transformed High Niobium Containing TiAl Alloys. Materials Research Society Symposia Proceedings, 2006, 980, 1.	0.1	5
284	Characterization of Phospholipid Bilayers on Tiâ€6Alâ€4V and Tiâ€6Alâ€7Nb. Advanced Engineering Materials, 2008, 10, B47.	1.6	5
285	In situ small-angle neutron scattering study of the early stages of precipitation in Fe-25at% Co-9at% Mo and Fe-1at% Cu at 500 °C. Journal of Physics: Conference Series, 2010, 247, 012038.	0.3	5
286	Application of Photons and Neutrons for the Characterization and Development of Advanced Steels. Advanced Engineering Materials, 2011, 13, 664-673.	1.6	5
287	Complementary High Spatial Resolution Methods in Materials Science and Engineering. Advanced Engineering Materials, 2017, 19, 1600671.	1.6	5
288	Atom probe study of B2 order and A2 disorder of the FeCo matrix in an Fe-Co-Mo-alloy. Micron, 2017, 98, 24-33.	1.1	5

#	Article	IF	CITATIONS
289	Thermodynamic evaluation of the Mo-rich corner of the Mo-Hf-C system including O impurities. Journal of Alloys and Compounds, 2017, 695, 372-381.	2.8	5
290	Thermal Expansion of a Multiphase Intermetallic Ti-Al-Nb-Mo Alloy Studied by High-Energy X-ray Diffraction. Materials, 2021, 14, 727.	1.3	5
291	High temperature nanoindentation as a tool to investigate plasticity upon phase transformations demonstrated on Cobalt. Materialia, 2021, 16, 101084.	1.3	5
292	An atomistic view on Oxygen, antisites and vacancies in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si165.svg"><mml:mrow><mml:mi>î³</mml:mi></mml:mrow>-TiAl phase. Computational Materials Science, 2021, 197, 110655.</mml:math 	1.4	5
293	X-Ray Strain Measurements in IV-VI Semiconductor Super-Lattices at Low Temperature. Advances in X-ray Analysis, 1983, 27, 171-178.	0.0	5
294	Dynamic Recovery and Recrystallization during Hot-Working in an Advanced TiAl Alloy. Praktische Metallographie/Practical Metallography, 2011, 48, 632-642.	0.1	5
295	Optimization of the Post-Process Heat Treatment Strategy for a Near-α Titanium Base Alloy Produced by Laser Powder Bed Fusion. Materials, 2022, 15, 1032.	1.3	5
296	Phase transformations and phase stability in the Ti–44 at.%Al–(0–7Âat.%)Mo system. Intermetallics, 2022, 143, 107484.	1.8	5
297	Epitaxial growth of PBTE doping superlattices on (111) BaF2 and (100) GaAs. , 1988, , 281-285.		4
298	Influence of the BaF2 substrate preparation on the structural perfection of epitaxially grown IV–VI compounds. Journal of Crystal Growth, 1990, 102, 933-938.	0.7	4
299	Microstructure and mechanical properties of Si and YN doped powder metallurgical tantalum. International Journal of Materials Research, 2004, 95, 573-578.	0.8	4
300	Spin configurations in strained magnetic superlattices grown by molecular beam epitaxy. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 379-382.	1.3	4
301	A Study of Recrystallization and Phase Transitions in Intermetallic Titanium Aluminides by In Situ High-Energy X-Ray Diffraction. Materials Science Forum, 2007, 539-543, 1519-1524.	0.3	4
302	Short-term creep behavior of a Cr Mo V hot-work tool steel. International Journal of Materials Research, 2009, 100, 1066-1073.	0.1	4
303	Electrons Meet Alloy Development: A γâ€TiAlâ€Based Alloy Showcase. Advanced Engineering Materials, 2022, 24, 2100977.	1.6	4
304	Preparation Methods for Examining the ω _o -Phase Formation in a β-Solidifying TiAl Alloy via Atom Probe Tomography. Praktische Metallographie/Practical Metallography, 2016, 53, 73-85.	0.1	4
305	Internal Friction and Creep of Titanium Aluminides with Different Microstructure. International Journal of Materials Research, 2022, 92, 1019-1025.	0.1	4
306	Effects of Thermomechanical Processing on Texture Formation in Titanium Aluminides. Materials Science Forum, 2002, 408-412, 1777-1782.	0.3	3

#	Article	IF	CITATIONS
307	Creep Properties of a High Niobium Containing Î ³ -TiAl Alloy Sheet Material. Materials Research Society Symposia Proceedings, 2002, 753, 1.	0.1	3
308	USANS investigation of early stages of metal foam formation. Applied Physics A: Materials Science and Processing, 2002, 74, s1136-s1138.	1.1	3
309	Massive Transformation in High Niobium Containing TiAl-Alloys. Materials Research Society Symposia Proceedings, 2004, 842, 31.	0.1	3
310	Experimental Studies and Thermodynamic Simulation of Phase Transformations in γ-TiAl Based Alloys. Materials Research Society Symposia Proceedings, 2004, 842, 363.	0.1	3
311	Microstructure and Mechanical Properties of a C/C-Cu Joint Developed for Plasma Facing Components. Advanced Engineering Materials, 2006, 8, 1092-1096.	1.6	3
312	Diffractionâ€Based Residual Stress Analysis Applied to Problems in the Aircraft Industry. Advanced Engineering Materials, 2007, 9, 627-638.	1.6	3
313	Oxidation Resistance and Ductility of a Coated γ-TiAl Based Alloy. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2008, 153, 268-272.	0.4	3
314	Hot-die Forging of a β-stabilized γ-TiAl Based Alloy. Materials Research Society Symposia Proceedings, 2008, 1128, 30501.	0.1	3
315	Short-term creep behavior of chromium rich hot-work tool steels. Materialwissenschaft Und Werkstofftechnik, 2010, 41, 18-28.	0.5	3
316	SANS Study of Carbon Addition in Ti–45Al–5Nb. Materials Research Society Symposia Proceedings, 2011, 1295, 195.	0.1	3
317	Characterization of Residual Stresses in 718 Turbine Discs by Neutron Diffraction and Finite Element Modelling. Advanced Materials Research, 0, 278, 102-107.	0.3	3
318	First Investigations on a TNM TiAl Alloy Processed by Spark Plasma Sintering. Materials Research Society Symposia Proceedings, 2012, 1516, 17-22.	0.1	3
319	Distribution of Alloying Elements within the Constituent Phases of a C-containing γ-TiAl Based Alloy studied by Atom Probe Tomography. Materials Research Society Symposia Proceedings, 2014, 1760, 7.	0.1	3
320	Texture Evolution during Deformation of a Mo-Hf-C Alloy Studied with Electron Backscatter Diffraction. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2015, 160, 226-230.	0.4	3
321	Boron Grain Boundary Segregation in a Heat Treatable Steel. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2015, 160, 204-208.	0.4	3
322	Controlling the high temperature deformation behavior and thermal stability of ultra-fine-grained W by re alloying. Journal of Materials Research, 2021, 36, 2408-2419.	1.2	3
323	Influence of the Sample Preparation Technique on the μ Phase Fraction Analysis in a Fe-25Co-15Mo Alloy by Means of XRD. Praktische Metallographie/Practical Metallography, 2015, 52, 323-333.	0.1	3
324	Physical metallurgy of high Nb-containing TiAl alloys. International Journal of Materials Research, 2022, 95, 585-591.	0.1	3

#	Article	IF	CITATIONS
325	Revealing dynamic processes in laser powder bed fusion with <i>in situ</i> X-ray diffraction at PETRA III. Review of Scientific Instruments, 2022, 93, 065104.	0.6	3
326	How Si affects the microstructural evolution and phase transformations of intermetallic γ-TiAl based alloys. Materialia, 2022, 24, 101475.	1.3	3
327	Transport and magneto-optical properties of PbTe doping superlattices. Surface Science, 1986, 174, 561-566.	0.8	2
328	Observation of electronic subbands in PbTe nipi structures. Superlattices and Microstructures, 1987, 3, 225-229.	1.4	2
329	Creep Behavior and Microstructural Stability of Lamellar γ-T1AI (Cr, Mo, Si, B) with Extremely Fine Lamellar Spacing. Materials Research Society Symposia Proceedings, 2000, 646, 125.	0.1	2
330	Texture analyses in titanium aluminide alloys by neutron diffraction. Applied Physics A: Materials Science and Processing, 2002, 74, s1222-s1223.	1.1	2
331	Characterization of biocompatible Ti(CNO) layers on polymeric substrates. Applied Surface Science, 2003, 219, 329-337.	3.1	2
332	A Study of the Deformation Behavior of Lamellar γ-TiAl by Numeric Modeling. Materials Research Society Symposia Proceedings, 2004, 842, 447.	0.1	2
333	Phase Transitions and Recrystallization in a Ti-46at%Al-9at%Nb Alloy as Observed by In-Situ High-Energy X-ray Diffraction. Materials Research Society Symposia Proceedings, 2006, 980, 7.	0.1	2
334	Texture Formation in High Niobium Containing TiAl Alloys. Materials Research Society Symposia Proceedings, 2006, 980, 1.	0.1	2
335	Examination of C/C flat tile mock-ups with hypervapotron cooling after high heat flux testing. Fusion Engineering and Design, 2007, 82, 299-305.	1.0	2
336	Isothermal aging kinetics of NiAl precipitates in a secondary hardening steel. International Journal of Microstructure and Materials Properties, 2008, 3, 373.	0.1	2
337	Thermal stability of high-speed steels as characterized by X-ray diffraction profile analysis. International Journal of Materials Research, 2009, 100, 1109-1113.	0.1	2
338	Behaviour of a maraging steel under quasi-static and dynamic compressive loading. International Journal of Microstructure and Materials Properties, 2010, 5, 65.	0.1	2
339	High Temperature Oxidation Protection of Multi-Phase Mo-Containing TiAl-Alloys by the Fluorine Effect. Materials Research Society Symposia Proceedings, 2012, 1516, 95-100.	0.1	2
340	B2 order transformation in a Fe – 25 at% Co – 9 at% Mo alloy. Materials Research Society Symposia Proceedings, 2015, 1760, 175.	0.1	2
341	In-situ High-energy X-ray Diffraction on an Intermetallic β-stabilised γ-TiAl Based Alloy. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2015, 160, 221-225.	0.4	2
342	Oxidation Protection of Multiphase Mo-Containing ^{ĵ3} -TiAl-Based Alloys under Cyclic Test Conditions. Materials Research Society Symposia Proceedings, 2015, 1760, 205.	0.1	2

#	Article	IF	CITATIONS
343	Enhancement of the Application Temperature of Titanium Aluminides. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2015, 160, 342-345.	0.4	2
344	Characterization of anisotropic pores and spatially oriented precipitates in sintered Mo-base alloys using small-angle neutron scattering. Journal of Applied Crystallography, 2018, 51, 1706-1714.	1.9	2
345	Microstructure Characterization of Intermetallic γ-TiAl Based Alloys after High-Temperature Deformation. Praktische Metallographie/Practical Metallography, 2015, 52, 239-248.	0.1	2
346	Investigation of the Precipitation Behavior of H-Carbides in a TiAl Alloy containing Carbon by means of in- and ex-situ Characterization. Praktische Metallographie/Practical Metallography, 2018, 55, 693-703.	0.1	2
347	Multi-Scale Microstructural Characterization. Praktische Metallographie/Practical Metallography, 2018, 55, 584-602.	0.1	2
348	Microstructural Characterization of Molybdenum Grain Boundaries by Micropillar Compression Testing and Atom Probe Tomography. Praktische Metallographie/Practical Metallography, 2019, 56, 776-786.	0.1	2
349	Geometrical model for calculating the effect of surface morphology on total xâ€ray output of medical xâ€ray tubes. Medical Physics, 2021, 48, 1546-1556.	1.6	2
350	Gefügecharakterisierung eines Warmarbeitsstahls mit martensitisch- bainitischem Mischgefüge. Praktische Metallographie/Practical Metallography, 2007, 44, 182-192.	0.1	2
351	Microstructural adjustment of hot-rolled Ti–6Al–4V based on a CCT diagram. Materials Science and Technology, 2022, 38, 957-964.	0.8	2
352	Mechanical Properties of γ-TiAl Based Alloys at Elevated Temperatures. Materials Research Society Symposia Proceedings, 2000, 646, 92.	0.1	1
353	Creep Behavior and Microstructural Stability of Ti-46Al-9Nb with Different Microstructures. Materials Research Society Symposia Proceedings, 2004, 842, 477.	0.1	1
354	Small-Angle Neutron Scattering. , 0, , 239-248.		1
355	Microstructure and Tensile Ductility of a Ti-43Al-4Nb-1Mo-0.1B Alloy. Materials Research Society Symposia Proceedings, 2008, 1128, 30801.	0.1	1
356	<i>In Situ</i> TEM Heating Study of the γ Lamellae Formation inside the α ₂ Matrix of a Ti-45Al-7.5Nb Alloy. Advanced Materials Research, 0, 146-147, 1365-1368.	0.3	1
357	Physical Metallurgy and Properties of β-solidifying TiAl Based Alloys. Materials Research Society Symposia Proceedings, 2011, 1295, 95.	0.1	1
358	Hot Deformation of Cast and Extruded TiAl: An <i>In Situ</i> Diffraction Study. Materials Science Forum, 0, 706-709, 1725-1730.	0.3	1
359	Relaxation Processes at High Temperature in TiAl-Nb-Mo Intermetallics. Materials Research Society Symposia Proceedings, 2012, 1516, 41-46.	0.1	1
360	Einfluss der SchweiÄÿparameter auf das Ermüdungsverhalten hochfester BaustÄ ¤ le. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 889-896.	0.5	1

#	Article	IF	CITATIONS
361	Advanced intermetallic γ-TiAl based alloys with improved microstructural stability during creep. Materials Research Society Symposia Proceedings, 2014, 1760, 67.	0.1	1
362	Constitutive Analysis of the Flow Curve Behavior of an Intermetallic b-solidifying γ-TiAl-based Alloy and Microstructural Characterization of the Deformed State. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2014, 159, 286-288.	0.4	1
363	The Use of Fluorine to Protect Î ² -Solidifying Î ³ -TiAl-Based Alloys against High-Temperature Oxidation. MRS Advances, 2017, 2, 1361-1367.	0.5	1
364	Creep of γ-TiAl Based Alloys — Experiments and Computational Modeling. Solid Mechanics and Its Applications, 2001, , 17-30.	0.1	1
365	Friction Welding of Intermetallic Titanium Aluminides: Microstructural Evolution and Mechanical Properties. Praktische Metallographie/Practical Metallography, 2011, 48, 572-581.	0.1	1
366	The Role of Metallography in the Development and Characterization of High-Performance Materials. Praktische Metallographie/Practical Metallography, 2015, 52, 59-74.	0.1	1
367	<i>In situ</i> fracture observations of distinct interface types within a fully lamellar intermetallic TiAl alloy. Journal of Materials Research, 0, , 1-14.	1.2	1
368	Microstructure Evolution of a New Precipitation-Strengthened Fe–Al–Ni–Ti Alloy down to Atomic Scale. Metals, 2022, 12, 906.	1.0	1
369	Optical investigation of PbTe doping superlattices. Superlattices and Microstructures, 1991, 9, 427-431.	1.4	Ο
370	Auswirkungen von statischen Langzeitglühungen auf Gefüge und mechanische Eigenschaften einer γ-TiAl Basislegierung. Materialwissenschaft Und Werkstofftechnik, 2003, 34, 499-504.	0.5	0
371	Internal Friction of a High-Nb Gamma-TiAl-Based Alloy with Different Microstructures. Materials Research Society Symposia Proceedings, 2004, 842, 483.	0.1	0
372	Control of Fully Lamellar Microstructures in a \hat{I}^3 -TiAl Based Alloy. , 2006, , 134-139.		0
373	Characterization of the behavior under impact loading of a maraging steel strengthened by nano-precipitates. European Physical Journal Special Topics, 2006, 134, 839-844.	0.2	Ο
374	Intermetallische Titanaluminide: Werkstoffe für hohe Temperaturen. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2006, 151, 195-199.	0.4	0
375	Precipitation-Induced Nano-Twinning. Materials Research Society Symposia Proceedings, 2006, 980, 6.	0.1	Ο
376	On The Influence of Nb on the Transition Temperatures of Titanium Aluminides. Materials Research Society Symposia Proceedings, 2006, 980, 3.	0.1	0
377	Diffraction-Based Residual Stress Analysis Applied to Problems in the Aircraft Industry. , 0, , 387-411.		Ο
378	Initial Stages of Lamellae Formation in High Nb Containing Î ³ -TiAl Based Alloys. Materials Research Society Symposia Proceedings, 2008, 1128, 40701.	0.1	0

#	Article	IF	CITATIONS
379	On the Behavior of Yttria/Yttrium during Mechanical Alloying of a Fe - Y ₂ O ₃ Model Alloy System. Advanced Materials Research, 0, 922, 598-603.	0.3	0
380	15.ÂInternationale Metallographie-Tagung. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2019, 164, 191-191.	0.4	0
381	Local-probe based electrical characterization of a multiphase intermetallic Î ³ -TiAl based alloy. Journal of Applied Physics, 2021, 129, 205107.	1.1	0
382	Intra- and Interband Magnetooptical Investigations of PbTe/Pb1â^'xSnxTe Superlattices. , 1985, , 543-546.		0
383	Characterization of the Crack Initiation and Crack Propagation Behavior of Welded Steels by Means of the Replica Technique. Praktische Metallographie/Practical Metallography, 2014, 51, 557-567.	0.1	0
384	Influence of Discontinuous Precipitation on the Creep Behavior of a β-Solidified γ-TiAl Based Alloy. Praktische Metallographie/Practical Metallography, 2015, 52, 249-258.	0.1	0
385	Impact of the Microstructure of Refractory Metals on their Mechanical Properties – a Multi-Scale Study. Praktische Metallographie/Practical Metallography, 2018, 55, 603-619.	0.1	0
386	Beryllium – A Challenge for Preparation and Mechanical Characterization. Praktische Metallographie/Practical Metallography, 2019, 56, 624-633.	0.1	0
387	The Development and Characterization of High-Performance Materials: A Retrospective Article. Praktische Metallographie/Practical Metallography, 2020, 57, 614-649.	0.1	0
388	Characterisation of precipitates in a stainless maraging steel by three-dimensional atom probe and small-angle neutron scattering. International Journal of Materials Research, 2022, 95, 644-649.	0.1	0