Yongming Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7050487/publications.pdf Version: 2024-02-01

YONGMING DENG

#	Article	IF	CITATIONS
1	Photoinduced oxidative cyclopropanation of ene-ynamides: synthesis of 3-aza[<i>n</i> .1.0]bicycles <i>via</i> vinyl radicals. Chemical Communications, 2021, 57, 5254-5257.	4.1	22
2	Bis(imino)pyridine iron complexes for catalytic carbene transfer reactions. Chemical Science, 2019, 10, 7958-7963.	7.4	41
3	Synthesis of Chiral Tetrasubstituted Azetidines from Donor–Acceptor Azetines via Asymmetric Copper(I)â€Catalyzed Imidoâ€Ylide [3+1]â€Cycloaddition with Metalloâ€Enolcarbenes. Angewandte Chemie - International Edition, 2019, 58, 16188-16192.	13.8	40
4	Synthesis of Chiral Tetrasubstituted Azetidines from Donor–Acceptor Azetines via Asymmetric Copper(I)â€Catalyzed Imidoâ€Ylide [3+1]â€Cycloaddition with Metalloâ€Enolcarbenes. Angewandte Chemie, 2019, 131, 16334-16338.	2.0	12
5	<i>ortho</i> â€Alkylation of Pyridine <i>N</i> â€Oxides with Alkynes by Photocatalysis: Pyridine <i>N</i> â€Oxide as a Redox Auxiliary. Chemistry - A European Journal, 2019, 25, 6638-6644.	3.3	32
6	Chiral donor–acceptor azetines as powerful reactants for synthesis of amino acid derivatives. Nature Communications, 2019, 10, 5328.	12.8	19
7	Nanocapsules of Magnetic Au Self-Assembly for DNA Migration and Secondary Self-Assembly. ACS Applied Materials & Interfaces, 2018, 10, 5348-5357.	8.0	14
8	Copperâ€Catalyzed Formal [4+2] Cycloaddition of Enoldiazoimides with Sulfur Ylides. Angewandte Chemie - International Edition, 2018, 57, 10343-10346.	13.8	22
9	Copperâ€Catalyzed Formal [4+2] Cycloaddition of Enoldiazoimides with Sulfur Ylides. Angewandte Chemie, 2018, 130, 10500-10503.	2.0	4
10	Catalytic Asymmetric [3+1] ycloaddition Reaction of Ylides with Electrophilic Metalloâ€enolcarbene Intermediates. Angewandte Chemie - International Edition, 2017, 56, 7479-7483.	13.8	66
11	Catalytic Asymmetric [3+1] ycloaddition Reaction of Ylides with Electrophilic Metalloâ€enolcarbene Intermediates. Angewandte Chemie, 2017, 129, 7587-7591.	2.0	16
12	Multicomponent reaction through cooperative trio catalysis incorporating enamine, BrÃ,nsted acid and metal Lewis acid catalysis: a concise route to access chromans. Organic and Biomolecular Chemistry, 2017, 15, 4933-4936.	2.8	15
13	Cycloaddition reactions of enoldiazo compounds. Chemical Society Reviews, 2017, 46, 5425-5443.	38.1	220
14	Catalytic Divergent [3+3]―and [3+2] ycloaddition by Discrimination Between Diazo Compounds. Angewandte Chemie, 2017, 129, 12460-12464.	2.0	14
15	Catalytic Divergent [3+3]―and [3+2] ycloaddition by Discrimination Between Diazo Compounds. Angewandte Chemie - International Edition, 2017, 56, 12292-12296.	13.8	49
16	Asymmetric [3+3] Cycloaddition for Heterocycle Synthesis. Synlett, 2017, 28, 1695-1706.	1.8	12
17	Versatile Donorâ€Acceptor Cyclopropenes in Metal Carbene Transformations. Israel Journal of Chemistry, 2016, 56, 399-408.	2.3	24
18	Catalytic Asymmetric Synthesis of Cyclopentyl βâ€Amino Esters by [3+2] Cycloaddition of Enecarbamates with Electrophilic Metalloenolcarbene Intermediates. Angewandte Chemie, 2016, 128, 10262-10266.	2.0	15

YONGMING DENG

#	Article	IF	CITATIONS
19	Reactivity and Selectivity in Catalytic Reactions of Enoldiazoacetamides. Assessment of Metal Carbenes as Intermediates. Organometallics, 2016, 35, 3413-3420.	2.3	42
20	Catalytic Asymmetric Synthesis of Cyclopentyl βâ€Amino Esters by [3+2] Cycloaddition of Enecarbamates with Electrophilic Metalloenolcarbene Intermediates. Angewandte Chemie - International Edition, 2016, 55, 10108-10112.	13.8	34
21	Highly Regio- and Enantioselective Formal [3 + 2]-Annulation of Indoles with Electrophilic Enol Carbene Intermediates. Organic Letters, 2016, 18, 4550-4553.	4.6	60
22	Syntheses of Tetrahydropyridazine and Tetrahydro-1,2-diazepine Scaffolds through Cycloaddition Reactions of Azoalkenes with Enol Diazoacetates. Organic Letters, 2016, 18, 5884-5887.	4.6	41
23	Chiral Dirhodium(II) Catalysts for Selective Metal Carbene Reactions. Current Organic Chemistry, 2015, 20, 61-81.	1.6	57
24	Unsymmetrically functionalized benzoporphyrins. RSC Advances, 2015, 5, 51489-51492.	3.6	8
25	Enantioselective cis-β-lactam synthesis by intramolecular C–H functionalization from enoldiazoacetamides and derivative donor–acceptor cyclopropenes. Chemical Science, 2015, 6, 2196-2201.	7.4	77
26	Dinitrogen extrusion from enoldiazo compounds under thermal conditions: synthesis of donor–acceptor cyclopropenes. Chemical Communications, 2015, 51, 12924-12927.	4.1	47
27	Chiral Bimetallic Catalysts Derived from Chiral Metal Phosphates: Enantioselective Three-Component Asymmetric Aza-Diels–Alder Reactions of Cyclic Ketones. Journal of Organic Chemistry, 2015, 80, 7984-7993.	3.2	20
28	Trio Catalysis Merging Enamine, BrÃ,nsted Acid, and Metal Lewis Acid Catalysis: Asymmetric Threeâ€Component Azaâ€Diels–Alder Reaction of Substituted Cinnamaldehydes, Cyclic Ketones, and Arylamines. Chemistry - A European Journal, 2015, 21, 7874-7880.	3.3	13
29	The Future of Catalysis by Chiral Lewis Acids. Topics in Organometallic Chemistry, 2015, , 1-25.	0.7	2
30	Hg(OTf) ₂ Catalyzed Intramolecular 1,4-Addition of Donor–Acceptor Cyclopropenes to Arenes. Organic Letters, 2015, 17, 4312-4315.	4.6	19
31	An efficient route to highly enantioenriched tetrahydroazulenes and β-tetralones by desymmetrization reactions of Π,Π-diaryldiazoaceto-acetates. Chemical Communications, 2015, 51, 565-568.	4.1	29
32	Oxa-Diels–Alder Reaction of Isatins and Acyclic α,β-Unsaturated Methyl Ketones through Cooperative Dienamine and Metal Lewis Acid Catalysis. Synthesis, 2014, 46, 1339-1347.	2.3	7
33	Synergistic–cooperative combination of enamine catalysis with transition metal catalysis. Chemical Communications, 2014, 50, 4272-4284.	4.1	155
34	Arylamine atalyzed Enamine Formation: Cooperative Catalysis with Arylamines and Acids. Angewandte Chemie - International Edition, 2013, 52, 3663-3667.	13.8	79
35	Sc(OTf) ₃ -Catalyzed Three-Component Cyclization of Arylamines, β,γ-Unsaturated α-Ketoesters, and 1,3-Dicarbonyl Compounds for the Synthesis of Highly Substituted 1,4-Dihydropyridines and Tetrahydropyridines. Journal of Organic Chemistry, 2013, 78, 5751-5755.	3.2	34
36	In situ fabrication and electrochemical behavior of amino acid polyoxometalate nanoparticles-embedded microcapsules. Amino Acids, 2010, 39, 1363-1367.	2.7	7

#	Article	IF	CITATIONS
37	Organic Photoredox Catalyzed Direct Hydroamination of Ynamides with Azoles. Advanced Synthesis and Catalysis, 0, , .	4.3	4