Modar Kassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7050458/publications.pdf

Version: 2024-02-01

44 papers 1,674 citations

304368 22 h-index 301761 39 g-index

44 all docs

44 docs citations

44 times ranked 2700 citing authors

#	Article	IF	CITATIONS
1	Gut Microbiota Regulates the Sympathetic Nerve Activity and Peripheral Serotonin Through Hypothalamic MicroRNA-204 in Order to Increase the Browning of White Adipose Tissue in Obesity. Cureus, 2022, 14, e21913.	0.2	O
2	The microsomal triglyceride transfer protein inhibitor lomitapide improves vascular function in mice with obesity. Obesity, 2022, 30, 893-901.	1.5	1
3	α-Ketoglutarate Upregulates Collecting Duct (Pro)renin Receptor Expression, Tubular Angiotensin II Formation, and Na+ Reabsorption During High Glucose Conditions. Frontiers in Cardiovascular Medicine, 2021, 8, 644797.	1.1	4
4	Hypothalamic miR-204 Induces Alteration of Heart Electrophysiology and Neurogenic Hypertension by Regulating the Sympathetic Nerve Activity: Potential Role of Microbiota. Cureus, 2021, 13, e18783.	0.2	1
5	Renin-Angiotensin System Alterations in the Human Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2021, 84, 1473-1484.	1.2	8
6	MicroRNAs and obesity-induced endothelial dysfunction: key paradigms in molecular therapy. Cardiovascular Diabetology, 2020, 19, 136.	2.7	34
7	Microbiota-governed microRNA-204 impairs endothelial function and blood pressure decline during inactivity in db/db mice. Scientific Reports, 2020, 10, 10065.	1.6	14
8	(Pro)renin Receptor-Dependent Induction of Profibrotic Factors Is Mediated by COX-2/EP4/NOX-4/Smad Pathway in Collecting Duct Cells. Frontiers in Pharmacology, 2019, 10, 803.	1.6	13
9	SUMO2 regulates vascular endothelial function and oxidative stress in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1292-H1300.	1.5	15
10	Metformin prevents vascular damage in hypertension through the AMPK/ER stress pathway. Hypertension Research, 2019, 42, 960-969.	1.5	29
11	Enhanced endoplasmic reticulum and mitochondrial stress in abdominal aortic aneurysm. Clinical Science, 2019, 133, 1421-1438.	1.8	39
12	MiR-204 regulates type 1 IP3R to control vascular smooth muscle cell contractility and blood pressure. Cell Calcium, 2019, 80, 18-24.	1.1	14
13	Targeting Autophagy in Obesityâ€Associated Heart Disease. Obesity, 2019, 27, 1050-1058.	1.5	20
14	Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1714-1719.	3.3	92
15	Sirtuin1 protects endothelial Caveolin-1 expression and preserves endothelial function via suppressing miR-204 and endoplasmic reticulum stress. Scientific Reports, 2017, 7, 42265.	1.6	21
16	Sirtuin 1 regulates cardiac electrical activity by deacetylating the cardiac sodium channel. Nature Medicine, 2017, 23, 361-367.	15.2	62
17	MicroRNA-204 promotes vascular endoplasmic reticulum stress and endothelial dysfunction by targeting Sirtuin1. Scientific Reports, 2017, 7, 9308.	1.6	39
18	Essential Role of Smooth Muscle STIM1 in Hypertension and Cardiovascular Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1900-1909.	1.1	48

#	Article	IF	Citations
19	Vascular microRNA-204 is remotely governed by the microbiome and impairs endothelium-dependent vasorelaxation by downregulating Sirtuin1. Nature Communications, 2016, 7, 12565.	5.8	93
20	P66Shc-Induced MicroRNA-34a Causes Diabetic Endothelial Dysfunction by Downregulating Sirtuin1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2394-2403.	1.1	67
21	OS 02-02 microRNA-204 AND SIRTUIN1 REGULATE VASCULAR ENDOPLASMIC RETICULUM STRESS AND ENDOTHELIUM-DEPENDENT VASORELAXATION Journal of Hypertension, 2016, 34, e48.	0.3	1
22	Nuclear factor kappa B inhibition improves conductance artery function in type 2 diabetic mice. Diabetes/Metabolism Research and Reviews, 2015, 31, 39-49.	1.7	6
23	Augmented EGF receptor tyrosine kinase activity impairs vascular function by NADPH oxidase-dependent mechanism in type 2 diabetic mouse. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2404-2410.	1.9	12
24	Differential role for stromal interacting molecule 1 in the regulation of vascular function. Pflugers Archiv European Journal of Physiology, 2015, 467, 1195-1202.	1.3	24
25	Vasodilator responses to acetylcholine are not mediated by the activation of soluble guanylate cyclase or TRPV4 channels in the rat. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1495-H1506.	1.5	11
26	Enhanced p22 ^{<i>phox</i>} expression impairs vascular function through p38 and ERK1/2 MAP kinase-dependent mechanisms in type 2 diabetic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H972-H980.	1.5	24
27	Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1063-1075.	1.9	119
28	Chronic Escitalopram Treatment Induces Erectile Dysfunction by Decreasing Nitric Oxide Bioavailability Mediated by Increased Nicotinamide Adenine Dinucleotide Phosphate Oxidase Activity and Reactive Oxygen Species Production. Urology, 2013, 82, 1188.e1-1188.e7.	0.5	15
29	CD4 +CD25 +Foxp3 regulatory T cells and vascular dysfunction in hypertension. Journal of Hypertension, 2013, 31, 1939-1943.	0.3	46
30	Enhanced NF-κB Activity Impairs Vascular Function Through PARP-1–, SP-1–, and COX-2–Dependent Mechanisms in Type 2 Diabetes. Diabetes, 2013, 62, 2078-2087.	0.3	74
31	Pravastatin Improves Endothelial Function in Arteries Used in Coronary Bypass Grafting. Journal of Cardiovascular Pharmacology, 2013, 61, 513-519.	0.8	5
32	Poly(ADP-Ribose) Polymerase 1 Inhibition Improves Coronary Arteriole Function in Type 2 Diabetes Mellitus. Hypertension, 2012, 59, 1060-1068.	1.3	44
33	A Novel Role for Epidermal Growth Factor Receptor Tyrosine Kinase and Its Downstream Endoplasmic Reticulum Stress in Cardiac Damage and Microvascular Dysfunction in Type 1 Diabetes Mellitus. Hypertension, 2012, 60, 71-80.	1.3	90
34	Endoplasmic Reticulum Stress Is Involved in Cardiac Damage and Vascular Endothelial Dysfunction in Hypertensive Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1652-1661.	1.1	182
35	Chronic inhibition of endoplasmic reticulum stress and inflammation prevents ischaemiaâ€induced vascular pathology in type II diabetic mice. Journal of Pathology, 2012, 227, 165-174.	2.1	40
36	ER stress induction increases NADPH oxidase and reduces eNOS activity in endothelial cells. FASEB Journal, 2012, 26, 863.11.	0.2	0

#	Article	IF	CITATION
37	Nuclear Factor kappa B (NFkB) Inhibition Improves Vascular Function in Type 2 Diabetic Mice. FASEB Journal, 2012, 26, .	0.2	0
38	Long-term intake of a milk casein hydrolysate attenuates the development of hypertension and involves cardiovascular benefits. Pharmacological Research, 2011, 63, 398-404.	3.1	50
39	Natural Regulatory T Cells Control Coronary Arteriolar Endothelial Dysfunction in Hypertensive Mice. American Journal of Pathology, 2011, 178, 434-441.	1.9	109
40	Interleukin-10 Released by CD4 ⁺ CD25 ⁺ Natural Regulatory T Cells Improves Microvascular Endothelial Function Through Inhibition of NADPH Oxidase Activity in Hypertensive Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2534-2542.	1.1	151
41	Endoplasmic Reticulum Stress and Microvascular Endothelial Dysfunction in Diabetes. Journal of Diabetes & Metabolism, 2011, 02, .	0.2	4
42	PARPâ€1 inhibition improves coronary arteriole function in type 2 diabetic mice. FASEB Journal, 2011, 25, 1025.9.	0.2	0
43	In vitro antioxidant activity of pravastatin provides vascular protection. European Journal of Pharmacology, 2010, 630, 107-111.	1.7	26
44	Chronic treatment with pravastatin prevents early cardiovascular changes in spontaneously hypertensive rats. British Journal of Pharmacology, 2009, 158, 541-547.	2.7	27