
## Muhammad Aqeel Kamran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7050330/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF        | CITATIONS            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|
| 1  | Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the<br>sustainability of agricultural systems. Journal of Environmental Management, 2020, 273, 111118.                                                            | 7.8       | 146                  |
| 2  | Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: A case study from severely contaminated areas. Chemosphere, 2015, 119, 553-561.                                                                                  | 8.2       | 139                  |
| 3  | Mechanistic elucidation of germination potential and growth of wheat inoculated with<br>exopolysaccharide and ACC- deaminase producing Bacillus strains under induced salinity stress.<br>Ecotoxicology and Environmental Safety, 2019, 183, 109466. | 6.0       | 112                  |
| 4  | Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum) Tj ETQq0 0                                                                                                                                         | 0 rggT /O | verlock 10 Tf<br>104 |
| 5  | Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs)<br>under nickel stress. Ecotoxicology and Environmental Safety, 2016, 126, 256-263.                                                                  | 6.0       | 93                   |
| 6  | Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa.<br>Environmental Science and Pollution Research, 2015, 22, 9275-9283.                                                                             | 5.3       | 86                   |
| 7  | Assisted phytoremediation of chromium spiked soils by Sesbania Sesban in association with Bacillus xiamenensis PM14: A biochemical analysis. Plant Physiology and Biochemistry, 2020, 146, 249-258.                                                  | 5.8       | 79                   |
| 8  | Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiology and Biochemistry, 2020, 152, 90-99.                           | 5.8       | 74                   |
| 9  | Elevated levels of arsenic and trace metals in drinking water of Tehsil Mailsi, Punjab, Pakistan. Journal of Geochemical Exploration, 2016, 169, 89-99.                                                                                              | 3.2       | 69                   |
| 10 | Occurrence and methods to remove arsenic and fluoride contamination in water. Environmental Chemistry Letters, 2017, 15, 125-149.                                                                                                                    | 16.2      | 67                   |
| 11 | Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environmental and Experimental Botany, 2019, 159, 23-33.                                       | 4.2       | 67                   |
| 12 | The potential of the flora from different regions of Pakistan in phytoremediation: a review.<br>Environmental Science and Pollution Research, 2014, 21, 801-812.                                                                                     | 5.3       | 64                   |
| 13 | Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environmental Monitoring and Assessment, 2015, 187, 311.                           | 2.7       | 63                   |
| 14 | Quality of tube well water intended for irrigation and human consumption with special emphasis on<br>arsenic contamination at the area of Punjab, Pakistan. Environmental Geochemistry and Health, 2017,<br>39, 847-863.                             | 3.4       | 56                   |
| 15 | Phyto-extraction of chromium and influence of plant growth promoting bacteria to enhance plant growth. Journal of Geochemical Exploration, 2017, 182, 269-274.                                                                                       | 3.2       | 52                   |
| 16 | Arsenic and fluoride removal by potato peel and rice husk (PPRH) ash in aqueous environments.<br>International Journal of Phytoremediation, 2017, 19, 1029-1036.                                                                                     | 3.1       | 50                   |
| 17 | Peanut straw biochar increases the resistance of two Ultisols derived from different parent<br>materials to acidification: A mechanism study. Journal of Environmental Management, 2018, 210, 171-179.                                               | 7.8       | 48                   |
| 18 | Bacillus sp. PM31 harboring various plant growth-promoting activities regulates Fusarium dry rot and wilt tolerance in potato. Archives of Agronomy and Soil Science, 2023, 69, 197-211                                                              | 2.6       | 45                   |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Incorporation of corn straw biochar inhibited the re-acidification of four acidic soils derived from different parent materials. Environmental Science and Pollution Research, 2018, 25, 9662-9672.                     | 5.3  | 39        |
| 20 | Mechanism of Cu(II) and Cd(II) immobilization by extracellular polymeric substances (Escherichia coli) on variable charge soils. Environmental Pollution, 2019, 247, 136-145.                                           | 7.5  | 39        |
| 21 | Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure- and peat-derived biochars in different acidic soils. Arabian Journal of Geosciences, 2018, 11, 1.                                            | 1.3  | 31        |
| 22 | Effects of extracellular polymeric substances of Pseudomonas fluorescens, citrate, and oxalate on Pb sorption by an acidic Ultisol. Ecotoxicology and Environmental Safety, 2019, 171, 790-797.                         | 6.0  | 22        |
| 23 | Higher cation exchange capacity determined lower critical soil pH and higher Al concentration for soybean. Environmental Science and Pollution Research, 2018, 25, 6980-6989.                                           | 5.3  | 19        |
| 24 | Effect of different phosphorus sources on soybean growth and arsenic uptake under arsenic stress conditions in an acidic ultisol. Ecotoxicology and Environmental Safety, 2018, 165, 11-18.                             | 6.0  | 19        |
| 25 | A Critical-Systematic Review of the Interactions of Biochar with Soils and the Observable Outcomes.<br>Sustainability, 2021, 13, 13726.                                                                                 | 3.2  | 18        |
| 26 | Impacts of chicken manure and peat-derived biochars and inorganic P alone or in combination on phosphorus fractionation and maize growth in an acidic ultisol. Biochar, 2019, 1, 283-291.                               | 12.6 | 11        |
| 27 | An electrokinetic perspective into the mechanism of divalent and trivalent cation sorption by extracellular polymeric substances of Pseudomonas fluorescens. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110450. | 5.0  | 11        |
| 28 | Elucidating the mechanisms determining the availability of phosphate by application of biochars from different parent materials. Environmental Geochemistry and Health, 2022, 44, 4191-4200.                            | 3.4  | 8         |
| 29 | Enhancing phosphorus availability in two variable charge soils by the amendments of crop straw biochars. Arabian Journal of Geosciences, 2020, 13, 1.                                                                   | 1.3  | 4         |