

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7050307/publications.pdf Version: 2024-02-01

ΙεΧυ

#	Article	IF	CITATIONS
1	Structure–direction towards the new large pore zeolite NUD-3. Chemical Communications, 2021, 57, 191-194.	2.2	15
2	Characterization of a Molecule Partially Confined at the Pore Mouth of a Zeotype. Angewandte Chemie, 2021, 133, 10327-10334.	1.6	0
3	Characterization of a Molecule Partially Confined at the Pore Mouth of a Zeotype. Angewandte Chemie - International Edition, 2021, 60, 10239-10246.	7.2	5
4	Substitution of Cetyltrimethylammonium for OSDA Cations During B-SSZ-70 Zeotype Synthesis and Its Influence on Delamination. Microporous and Mesoporous Materials, 2021, 319, 111042.	2.2	3
5	P2RY14 Is a Potential Biomarker of Tumor Microenvironment Immunomodulation and Favorable Prognosis in Patients With Head and Neck Cancer. Frontiers in Genetics, 2021, 12, 670746.	1.1	9
6	Cs-RHO Goes from Worst to Best as Water Enhances Equilibrium CO ₂ Adsorption via Phase Change. Langmuir, 2021, 37, 13903-13908.	1.6	9
7	Diverse crystal size effects in covalent organic frameworks. Nature Communications, 2020, 11, 6128.	5.8	55
8	Rational Manipulation of Stacking Arrangements in Threeâ€Dimensional Zeolites Built from Twoâ€Dimensional Zeolitic Nanosheets. Angewandte Chemie, 2020, 132, 20106-20111.	1.6	0
9	Rational Manipulation of Stacking Arrangements in Threeâ€Dimensional Zeolites Built from Twoâ€Dimensional Zeolitic Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 19934-19939.	7.2	4
10	Stabile Silanoltriaden im Zeolithkatalysator SSZâ€70. Angewandte Chemie, 2020, 132, 11032-11036.	1.6	8
11	A Stable Silanol Triad in the Zeolite Catalyst SSZâ€70. Angewandte Chemie - International Edition, 2020, 59, 10939-10943.	7.2	33
12	Bridging the Gap between Structurally Distinct 2D Lamellar Zeolitic Precursors through a 3D Germanosilicate Intermediate. Angewandte Chemie - International Edition, 2019, 58, 14529-14533.	7.2	5
13	Bridging the Gap between Structurally Distinct 2D Lamellar Zeolitic Precursors through a 3D Germanosilicate Intermediate. Angewandte Chemie, 2019, 131, 14671-14675.	1.6	2
14	Photoinduced synthesis of Bi ₂ O ₃ nanotubes based on oriented attachment. Journal of Materials Chemistry A, 2019, 7, 1424-1428.	5.2	9
15	Hydroxyl free radical route to the stable siliceous Ti-UTL with extra-large pores for oxidative desulfurization. Chemical Communications, 2019, 55, 1390-1393.	2.2	39
16	A New Layered Silicogermanate PKU-23 and Its Transformation to a Zeolite with Three-Dimensional Channels. Crystal Growth and Design, 2019, 19, 2272-2278.	1.4	2
17	Crystallization of a Novel Germanosilicate ECNUâ€16 Provides Insights into the Spaceâ€Filling Effect on Zeolite Crystal Symmetry. Chemistry - A European Journal, 2018, 24, 9247-9253.	1.7	11
18	Discovery of Layered Indium Hydroxide via a Hydroperoxyl Anion Coordinated Precursor at Room Temperature. Chemistry - A European Journal, 2018, 24, 15491-15494.	1.7	0

Le Xu

#	Article	IF	CITATIONS
19	Achieving High Pseudocapacitance of 2D Titanium Carbide (MXene) by Cation Intercalation and Surface Modification. Advanced Energy Materials, 2017, 7, 1602725.	10.2	514
20	Simple CTAB surfactant-assisted hierarchical lamellar MWW titanosilicate: a high-performance catalyst for selective oxidations involving bulky substrates. Catalysis Science and Technology, 2017, 7, 2874-2885.	2.1	28
21	Facile synthesis of ECNU-20 (IWR) hollow sphere zeolite composed of aggregated nanosheets. Dalton Transactions, 2017, 46, 15641-15645.	1.6	12
22	A crystalline AlPO4-5 intermediate: designed synthesis, structure, and phase transformation. Dalton Transactions, 2017, 46, 12209-12216.	1.6	6
23	Recent Advances in the Synthesis and Application of Twoâ€Dimensional Zeolites. Advanced Energy Materials, 2016, 6, 1600441.	10.2	65
24	Self-Assembly of Cetyltrimethylammonium Bromide and Lamellar Zeolite Precursor for the Preparation of Hierarchical MWW Zeolite. Chemistry of Materials, 2016, 28, 4512-4521.	3.2	88
25	Diversity of layered zeolites: from synthesis to structural modifications. New Journal of Chemistry, 2016, 40, 3968-3981.	1.4	44
26	Construction of unique six-coordinated titanium species with an organic amine ligand in titanosilicate and their unprecedented high efficiency for alkene epoxidation. Chemical Communications, 2015, 51, 9010-9013.	2.2	107
27	Intergrown Zeolite MWW Polymorphs Prepared by the Rapid Dissolution–Recrystallization Route. Chemistry of Materials, 2015, 27, 7852-7860.	3.2	36
28	Distinctions of hydroxylamine formation and decomposition in cyclohexanone ammoximation over microporous titanosilicates. Journal of Catalysis, 2014, 309, 1-10.	3.1	51
29	Efficient cycloaddition of epoxides and carbon dioxide over novel organic–inorganic hybrid zeolite catalysts. Chemical Communications, 2014, 50, 15764-15767.	2.2	64
30	Hierarchical, core–shell meso-ZSM-5@mesoporous aluminosilicate-supported Pt nanoparticles for bifunctional hydrocracking. Journal of Materials Chemistry A, 2014, 2, 15535-15545.	5.2	39
31	Bifunctional Tandem Catalysis on Multilamellar Organic–Inorganic Hybrid Zeolites. ACS Catalysis, 2014, 4, 2959-2968.	5.5	64
32	Mesoporus MCM-22 Zeolites Prepared through Organic Amine-Assisted Reversible Structural Change and Protective Desilication for Catalysis of Bulky Molecules. ACS Catalysis, 2013, 3, 1892-1901.	5.5	28
33	Clean Synthesis of Amides over Bifunctional Catalysts of Rhodiumâ€Loaded Titanosilicates. ChemCatChem, 2013, 5, 2462-2470.	1.8	12
34	Clean synthesis of acetaldehyde oxime through ammoximation on titanosilicate catalysts. Catalysis Science and Technology, 2013, 3, 2587.	2.1	29
35	Trimodel hierarchical yolk–shell porous materials TS-1@mesocarbon: Synthesis and catalytic application. Chinese Chemical Letters, 2013, 24, 559-562.	4.8	6
36	One-pot synthesis of primary amides on bifunctional Rh(OH)x/TS-1@KCC-1 catalysts. Chinese Journal of Catalysis, 2013, 34, 2057-2065.	6.9	17

Le Xu

#	Article	IF	CITATIONS
37	One-pot synthesis of benzamide over a robust tandem catalyst based on center radially fibrous silica encapsulated TS-1. Chemical Communications, 2013, 49, 2709.	2.2	59
38	Hydrothermal synthesis of MWW-type stannosilicate and its post-structural transformation to MCM-56 analogue. Microporous and Mesoporous Materials, 2013, 165, 210-218.	2.2	40
39	Core–Shell-Structured Titanosilicate As A Robust Catalyst for Cyclohexanone Ammoximation. ACS Catalysis, 2013, 3, 103-110.	5.5	51
40	MWW-Type Titanosilicate. Springer Briefs in Molecular Science, 2013, , .	0.1	8
41	Catalytic Properties of Ti-MWW in Selective Oxidation Reactions. Springer Briefs in Molecular Science, 2013, , 63-123.	0.1	1
42	Synthesis of core–shell structured TS-1@mesocarbon materials and their applications as a tandem catalyst. Journal of Materials Chemistry, 2012, 22, 14219.	6.7	29
43	Enhancement of Alkene Epoxidation Activity of Titanosilicates by Gasâ€Phase Ammonia Modification. Chinese Journal of Chemistry, 2012, 30, 2205-2211.	2.6	6
44	Multilayer structured MFI-type titanosilicate: Synthesis and catalytic properties in selective epoxidation of bulky molecules. Journal of Catalysis, 2012, 288, 16-23.	3.1	98
45	Synthesis and formation mechanism of TS-1@mesosilica core–shell materials templated by triblock copolymer surfactant. Microporous and Mesoporous Materials, 2012, 153, 8-17.	2.2	20
46	Synthesis of bifunctional catalyst Au/TS-1@Mesosilica and applied for direct propylene epoxidation with H ₂ and O ₂ . Scientia Sinica Chimica, 2012, 42, 548-557.	0.2	2
47	Core/shell-structured TS-1@mesoporous silica-supported Au nanoparticles for selective epoxidation of propylene with H2 and O2. Journal of Materials Chemistry, 2011, 21, 10852.	6.7	88
48	Core/shell-structured Al-MWW@B-MWW zeolites for shape-selective toluene disproportionation to para-xylene. Journal of Catalysis, 2011, 283, 168-177.	3.1	34
49	Selective epoxidation of propylene to propylene oxide with H2 and O2 over Au/Ti-MWW catalysts. Pure and Applied Chemistry, 2011, 84, 561-578.	0.9	13