Matteo Pozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7050084/publications.pdf

Version: 2024-02-01

	535685	620720
903	17	26
citations	h-index	g-index
83	83	915
docs citations	times ranked	citing authors
	citations 83	903 17 citations h-index 83 83

#	Article	IF	Citations
1	Predicting the Evolution of Controlled Systems Modeled by Finite Markov Processes. IEEE Transactions on Reliability, 2022, 71, 28-46.	3.5	3
2	Optimal inspection of binary systems via Value of Information analysis. Reliability Engineering and System Safety, 2022, 217, 107944.	5.1	8
3	Optimal adaptive inspection and maintenance for redundant systems. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2021, 235, 568-579.	0.6	0
4	Short-term probabilistic forecasting of meso-scale near-surface urban temperature fields. Environmental Modelling and Software, 2021, 145, 105189.	1.9	6
5	Information avoidance and overvaluation under epistemic constraints: Principles and implications for regulatory policies. Reliability Engineering and System Safety, 2020, 197, 106814.	5.1	8
6	Developing Time-Variant Filter for Meso-Scale Surface Temperature Prediction. IABSE Symposium Report, 2020, , .	0.0	0
7	A Journey of Exploration through Infrastructure Systems: from Value of Information to Information Avoidance. IABSE Symposium Report, 2020, , .	0.0	0
8	Model-free reinforcement learning with model-based safe exploration: Optimizing adaptive recovery process of infrastructure systems. Structural Safety, 2019, 80, 46-55.	2.8	24
9	What makes longâ€ŧerm monitoring convenient? A parametric analysis of value of information in infrastructure maintenance. Structural Control and Health Monitoring, 2019, 26, e2329.	1.9	19
10	Empirical investigation of regression models for predicting system behavior in air handling units. Science and Technology for the Built Environment, 2019, 25, 247-260.	0.8	4
11	Submodularity issues in value-of-information-based sensor placement. Reliability Engineering and System Safety, 2019, 183, 93-103.	5.1	21
12	A graphical approach to assess the detectability of multiple simultaneous faults in air handling units. Energy and Buildings, 2019, 184, 275-288.	3.1	5
13	Value-of-information in spatio-temporal systems: Sensor placement and scheduling. Reliability Engineering and System Safety, 2018, 172, 45-57.	5.1	31
14	Gaussian Process Regression and Classification for Probabilistic Damage Assessment of Spatially Distributed Systems. KSCE Journal of Civil Engineering, 2018, 22, 1016-1026.	0.9	4
15	Surface heat assessment for developed environments: Optimizing urban temperature monitoring. Building and Environment, 2018, 141, 143-154.	3.0	11
16	Climate Change Impacts on Bromide, Trihalomethane Formation, and Health Risks at Coastal Groundwater Utilities. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2017, 3, .	1.1	18
17	Bayesian calibration of building energy models with large datasets. Energy and Buildings, 2017, 154, 343-355.	3.1	85
18	Surface heat assessment for developed environments: Probabilistic urban temperature modeling. Computers, Environment and Urban Systems, 2017, 66, 53-64.	3.3	14

#	Article	IF	Citations
19	Hidden-Model Processes for Adaptive Management under Uncertain Climate Change. Journal of Infrastructure Systems, 2017, 23, .	1.0	14
20	Model Checking After Bayesian Inference. Springer Series in Reliability Engineering, 2017, , 317-339.	0.3	0
21	Value of information for spatially distributed systems: Application to sensor placement. Reliability Engineering and System Safety, 2016, 154, 219-233.	5.1	44
22	Hierarchical modeling of systems with similar components: A framework for adaptive monitoring and control. Reliability Engineering and System Safety, 2016, 153, 159-169.	5.1	16
23	A Bayesian Approach for Assessing Seismic Transitions Associated with Wastewater Injections. Bulletin of the Seismological Society of America, 2016, 106, 832-845.	1.1	12
24	Probabilistic framework for assessing maximum structural response based on sensor measurements. Structural Safety, 2016, 61, 43-56.	2.8	12
25	Integrated Inspection Scheduling and Maintenance Planning for Infrastructure Systems. Computer-Aided Civil and Infrastructure Engineering, 2016, 31, 403-415.	6.3	52
26	Value of information in sequential decision making: Component inspection, permanent monitoring and system-level scheduling. Reliability Engineering and System Safety, 2016, 154, 137-151.	5.1	62
27	Conditional entropy and value of information metrics for optimal sensing in infrastructure systems. Structural Safety, 2016, 60, 77-90.	2.8	29
28	Response spectrum analysis for floor acceleration. Earthquake Engineering and Structural Dynamics, 2015, 44, 2111-2127.	2.5	35
29	On predicting monitoring system effectiveness. Proceedings of SPIE, 2015, , .	0.8	1
30	Optimal Planning and Learning in Uncertain Environments for the Management of Wind Farms. Journal of Computing in Civil Engineering, 2015, 29, .	2.5	28
31	Impact of prior perception on bridge health diagnosis. Journal of Civil Structural Health Monitoring, 2015, 5, 509-525.	2.0	20
32	Statistical Method for Early Detection of Changes in Seismic Rate Associated with Wastewater Injections. Bulletin of the Seismological Society of America, 2015, 105, 2852-2862.	1.1	7
33	The remarkable story of Portogruaro Civic Tower's probabilistic health monitoring. Structural Monitoring and Maintenance, 2015, 2, 301-318.	1.7	4
34	On estimating the accuracy of monitoring methods using Bayesian error propagation technique. Proceedings of SPIE, 2014, , .	0.8	5
35	Gaussian Bayesian network for reliability analysis of a system of bridges. , 2014, , 3083-3090.		1
36	Bayesian analysis of monitoring data from cable-stayed bridge. , 2014, , 2465-2470.		1

#	Article	IF	CITATIONS
37	Inference on maximum structural response based on measured accelerations using dynamic Bayesian network., 2014,, 2481-2488.		0
38	Analysis of monitoring data from cable-stayed bridge using sensor fusion techniques. , 2013, , .		1
39	Fusion of monitoring data from cable-stayed bridge. , 2013, , .		4
40	Estimation of load redistribution on a cable-stayed bridge using a combination of sensing techniques. Proceedings of SPIE, 2012 , , .	0.8	2
41	ARX residuals in damage detection. Structural Control and Health Monitoring, 2012, 19, 535-547.	1.9	17
42	Assessing the value of alternative bridge health monitoring systems. Bridge Maintenance, Safety and Management, 2012, , 782-789.	0.1	6
43	Combination of sensing techniques to estimate tension and elongation in bridge cable-stays. Bridge Maintenance, Safety and Management, 2012, , 852-859.	0.1	1
44	Bayesian networks for post-earthquake assessment of bridges. Bridge Maintenance, Safety and Management, 2012, , 722-729.	0.1	4
45	Analysis of lifespan monitoring data using Bayesian logic. Journal of Physics: Conference Series, 2011, 305, 012115.	0.3	1
46	Assessing the value of information for long-term structural health monitoring. , 2011, , .		63
47	Laboratory validation of MEMS-based sensors for post-earthquake damage assessment image. , 2011, , .		1
48	In-field testing of a steel wind turbine tower. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 103-112.	0.3	8
49	MEMS-based sensors for post-earthquake damage assessment. Journal of Physics: Conference Series, 2011, 305, 012100.	0.3	10
50	Long term wireless ambient monitoring of heritage buildings. , 2010, , .		4
51	Historic Buildings: Long Term Stability Evaluation Using Wireless Sensor Networks. Advanced Materials Research, 2010, 133-134, 235-240.	0.3	3
52	A framework for evaluating the impact of structural health monitoring on bridge management. Bridge Maintenance, Safety and Management, 2010, , 161-161.	0.1	21
53	Wireless sensor networks for permanent health monitoring of historic buildings. Smart Structures and Systems, 2010, 6, 595-618.	1.9	47
54	Bayesian Logic Applied to Damage Assessment of a Smart Precast Concrete Element. Key Engineering Materials, 2009, 413-414, 351-358.	0.4	1

#	Article	IF	CITATIONS
55	Photonic crystals for monitoring fatigue phenomena in steel structures. , 2009, , .		21
56	An examination of the ARX as a residual generator for damage detection., 2009,,.		2
57	Development and laboratory validation of in-line multiplexed low-coherence interferometric sensors. Optical Fiber Technology, 2008, 14, 281-293.	1.4	24
58	Managing the Historical Heritage Using Distributed Technologies. International Journal of Architectural Heritage, 2008, 2, 200-225.	1.7	25
59	Design and laboratory validation of a structural element instrumented with multiplexed interferometric fiber optic sensors. Proceedings of SPIE, 2008, , .	0.8	3
60	Smart structural elements for the condition monitoring of bridge structures. , 2008, , .		0
61	Probabilistic condition monitoring of smart structural elements. , 2008, , .		0
62	Bayesian Approach to Condition Monitoring of PRC Bridges. Key Engineering Materials, 2007, 347, 227-232.	0.4	2
63	Multiplexing low-coherence interferometer sensors: laboratory tests and design for integration within RC structures. , 2007, , .		2
64	Performance evaluation of smart prefabricated concrete elements. Smart Structures and Systems, 2007, 3, 475-494.	1.9	3
65	Industrial design of instrumented PRC elements for the condition monitoring of civil infrastructure. , 2006, 6167, 131.		0
66	Smart RC elements for long-life monitoring of civil infrastructures., 2005, 5765, 430.		1
67	Vibration-Based Condition Monitoring of Smart Prefabricated Concrete Elements. Key Engineering Materials, 2005, 293-294, 743-752.	0.4	2
68	Comparison of Two Approaches in Reliability Analysis for the Network of Trentinos Bridge Management System. Applied Mechanics and Materials, 0, 351-352, 1700-1705.	0.2	2
69	Sensor Fusion on Structural Monitoring Data Analysis: Application to a Cable-Stayed Bridge. Key Engineering Materials, 0, 569-570, 812-819.	0.4	6
70	System-level Inspection Scheduling: An Approach Based on Stochastic Future Allocation. , 0, , .		1
71	Optimal Sensor Placement and Scheduling with the Value of Information. , 0, , .		1
72	Parametric Analysis of Value of Information for Monitoring Infrastructure Components. , 0, , .		1

#	Article	IF	CITATIONS
73	Sensor Placement Optimization for Structural Health Monitoring. , 0, , .		2
74	Resilience to Extreme Events: A Bayesian Nonparametric Approach. , 0, , .		0
75	Energetic formulation of largeâ€deformation poroelasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 0, , .	1.7	4