
Daryn Borgekov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7049961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of the Application Efficiency of Irradiation with Heavy Ions to Increase the Helium Swelling Resistance of BeO Ceramics. Metals, 2022, 12, 307.	2.3	0
2	Influence of irradiation with heavy Kr15+ ions on the structural, optical and strength properties of BeO ceramic. Journal of Materials Science: Materials in Electronics, 2021, 32, 15375-15385.	2.2	32
3	Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. Journal of Materials Science: Materials in Electronics, 2021, 32, 16694-16705.	2.2	232
4	Study of the efficiency of increasing the Bi2O3 concentration on the optical, radiation shielding and strength characteristics of 0.5TeO2-(0.5-x)WO3-xBi2O3 glasses. Optical Materials, 2021, 120, 111494.	3.6	5
5	The influence of the energy of incident protons on the defect formation and radiation resistance of AlN ceramics. Solid State Sciences, 2020, 107, 106367.	3.2	5
6	Dynamics of Radiation Damage in AlN Ceramics under High-Dose Irradiation, Typical for the Processes of Swelling and Hydrogenation. Crystals, 2020, 10, 546.	2.2	5
7	Investigation of the Structural Changes and Catalytic Properties of FeNi Nanostructures as a Result of Exposure to Gamma Radiation. Crystals, 2020, 10, 254.	2.2	Ο
8	The Study of the Applicability of Electron Irradiation for FeNi Microtubes Modification. Nanomaterials, 2020, 10, 47.	4.1	2
9	Study of the rate of degradation of permalloy nanowires. Surface and Coatings Technology, 2020, 389, 125621.	4.8	0
10	PET Ion-Track Membranes: Formation Features and Basic Applications. Springer Proceedings in Physics, 2019, , 461-479.	0.2	5
11	Optimization of PET Ion-Track Membranes Parameters. Materials Today: Proceedings, 2019, 7, 866-871.	1.8	10
12	A simple way to control the filling degree of the SiO2/Si template pores with nickel. Materials Today: Proceedings, 2019, 7, 860-865.	1.8	2
13	SRIM Simulation of Carbon Ions Interaction with Ni Nanotubes. Materials Today: Proceedings, 2019, 7, 872-877.	1.8	4
14	Evolution of Structural and Magnetic Characteristics of Template Synthesized Nickel Nanotubes. NATO Science for Peace and Security Series B: Physics and Biophysics, 2019, , 113-134.	0.3	1
15	Influence of temperature and electrodeposition potential on structure and magnetic properties of nickel nanotubes. Journal of Magnetism and Magnetic Materials, 2019, 489, 165436.	2.3	16
16	Effect of Acidity on the Morphology, Structure, and Composition of Ni Nanotubes. Russian Journal of Physical Chemistry A, 2019, 93, 125-128.	0.6	1
17	Degradation mechanism and way of surface protection of nickel nanostructures. Materials Chemistry and Physics, 2019, 223, 88-97.	4.0	25
18	Influence of media with different acidity on structure of FeNi nanotubes. EPJ Web of Conferences, 2018, 177, 01003.	0.3	3

DARYN BORGEKOV

#	ARTICLE	IF	CITATIONS
19	Effect of ionizing radiation on structural and conductive properties of copper nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 175-179.	2.1	16
20	The behavior of Ni nanotubes under the influence of environments with different acidities. CrystEngComm, 2018, 20, 3258-3266.	2.6	14
21	Study of the Reactivity of Ni Nanotubes in Media with Different рЕ Crystallography Reports, 2018, 63, 90-95.	0.6	3
22	Impact of Testing Temperature on the Structure and Catalytic Properties of Au Nanotubes Composites. Bulletin of Chemical Reaction Engineering and Catalysis, 2018, 13, 405.	1.1	4
23	Hydrophobization of track membrane surface by ion-plasma sputtering method. AIP Conference Proceedings, 2017, , .	0.4	1
24	Changes in the structure and conducting properties of copper nanotubes as a result of bombardment with O3+ ions. High Energy Chemistry, 2017, 51, 375-380.	0.9	2
25	The effect of oxidation pretreatment of polymer template on the formation and catalytic activity of Au/PET membrane composites. Chemical Papers, 2017, 71, 2353-2358.	2.2	38
26	FERROMAGNETIC NANOTUBES IN PORES OF TRACK MEMBRANES FOR THE FLEXIBLE ELECTRONIC ELEMENTS. Pribory I Metody Izmerenij, 2017, 8, 214-221.	0.3	2
27	Evaluation of the catalytic activity of the composite track-etched membranes for p-nitrophenol reduction reaction. Petroleum Chemistry, 2015, 55, 810-815.	1.4	16
28	Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes. Nuclear Instruments & Methods in Physics Research B, 2015, 365, 70-74.	1.4	23
29	Temperature Dependent Catalytic Activity of Ag/PET Ion-Track Membranes Composites. Acta Physica Polonica A, 2015, 128, 871-875.	0.5	15
30	Synthesis, Structure, and Catalytic Activity of Au/Poly(ethylene terephthalate) Composites. Acta Physica Polonica A, 2014, 125, 1263-1267.	0.5	15