List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7049927/publications.pdf Version: 2024-02-01

	4955	2238
42,266	84	201
citations	h-index	g-index
251	251	42599
docs citations	times ranked	citing authors
	citations 251	42,266 84 citations h-index 251 251

ALAN R SALTIFI

#	Article	IF	CITATIONS
1	Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001, 414, 799-806.	13.7	4,324
2	Obesity induces a phenotypic switch in adipose tissue macrophage polarization. Journal of Clinical Investigation, 2007, 117, 175-184.	3.9	3,739
3	PD 098059 Is a Specific Inhibitor of the Activation of Mitogen-activated Protein Kinase Kinase in Vitro and in Vivo. Journal of Biological Chemistry, 1995, 270, 27489-27494.	1.6	3,190
4	A synthetic inhibitor of the mitogen-activated protein kinase cascade Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7686-7689.	3.3	2,649
5	Inflammatory links between obesity and metabolic disease. Journal of Clinical Investigation, 2011, 121, 2111-2117.	3.9	1,845
6	Inflammatory mechanisms linking obesity and metabolic disease. Journal of Clinical Investigation, 2017, 127, 1-4.	3.9	1,321
7	Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nature Medicine, 1999, 5, 810-816.	15.2	926
8	Increased Inflammatory Properties of Adipose Tissue Macrophages Recruited During Diet-Induced Obesity. Diabetes, 2007, 56, 16-23.	0.3	888
9	Adapting to obesity with adipose tissue inflammation. Nature Reviews Endocrinology, 2017, 13, 633-643.	4.3	864
10	Inhibition of MAP Kinase Kinase Blocks the Differentiation of PC-12 Cells Induced by Nerve Growth Factor. Journal of Biological Chemistry, 1995, 270, 13585-13588.	1.6	811
11	Phenotypic Switching of Adipose Tissue Macrophages With Obesity Is Generated by Spatiotemporal Differences in Macrophage Subtypes. Diabetes, 2008, 57, 3239-3246.	0.3	757
12	Signaling pathways in insulin action: molecular targets of insulin resistance. Journal of Clinical Investigation, 2000, 106, 165-169.	3.9	708
13	Regulation of glucose transport by insulin: traffic control of GLUT4. Nature Reviews Molecular Cell Biology, 2012, 13, 383-396.	16.1	638
14	New Perspectives into the Molecular Pathogenesis and Treatment of Type 2 Diabetes. Cell, 2001, 104, 517-529.	13.5	631
15	CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature, 2000, 407, 202-207.	13.7	621
16	Insulin-like Growth Factor 1 Inhibits Apoptosis Using the Phosphatidylinositol 3′-Kinase and Mitogen-activated Protein Kinase Pathways. Journal of Biological Chemistry, 1997, 272, 154-161.	1.6	588
17	Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nature Medicine, 2015, 21, 159-165.	15.2	562
18	Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature, 2001, 410, 944-948.	13.7	530

#	Article	IF	CITATIONS
19	Insulin signaling pathways in time and space. Trends in Cell Biology, 2002, 12, 65-71.	3.6	529
20	Insulin Signaling and the Regulation of Glucose Transport. Molecular Medicine, 2004, 10, 65-71.	1.9	383
21	An inhibitor of the protein kinases TBK1 and IKK-É> improves obesity-related metabolic dysfunctions in mice. Nature Medicine, 2013, 19, 313-321.	15.2	364
22	Mitogen-activated Protein Kinase Kinase Inhibition Does Not Block the Stimulation of Glucose Utilization by Insulin. Journal of Biological Chemistry, 1995, 270, 20801-20807.	1.6	354
23	A Pericellular Collagenase Directs the 3-Dimensional Development of White Adipose Tissue. Cell, 2006, 125, 577-591.	13.5	351
24	The exocyst complex is required for targeting of Clut4 to the plasma membrane by insulin. Nature, 2003, 422, 629-633.	13.7	321
25	The Protein Kinase IKKÉ› Regulates Energy Balance in Obese Mice. Cell, 2009, 138, 961-975.	13.5	318
26	Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E166-E174.	1.8	296
27	Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 664-668.	3.3	279
28	PTG, a Protein Phosphatase 1-Binding Protein with a Role in Glycogen Metabolism. Science, 1997, 275, 1475-1478.	6.0	278
29	PPARÎ ³ and the Treatment of Insulin Resistance. Trends in Endocrinology and Metabolism, 2000, 11, 362-368.	3.1	267
30	The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6501-6504.	1.0	253
31	ER Stress Drives Lipogenesis and Steatohepatitis via Caspase-2 Activation of S1P. Cell, 2018, 175, 133-145.e15.	13.5	219
32	A Novel, Multifunctional c-Cbl Binding Protein in Insulin Receptor Signaling in 3T3-L1 Adipocytes. Molecular and Cellular Biology, 1998, 18, 872-879.	1.1	214
33	Insulin stimulates the tyrosine phosphorylation of caveolin Journal of Cell Biology, 1995, 129, 1523-1531.	2.3	211
34	In vivo, Pikfyve generates PI(3,5)P ₂ , which serves as both a signaling lipid and the major precursor for PI5P. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17472-17477.	3.3	191
35	Inhibition of AMPK Catabolic Action by GSK3. Molecular Cell, 2013, 50, 407-419.	4.5	191
36	TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue. Cell, 2018, 172, 731-743.e12.	13.5	191

#	Article	IF	CITATIONS
37	Thiazolidinediones and insulin resistance: Peroxisome proliferatoractivated receptor activation stimulates expression of the CAP gene. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14751-14756.	3.3	189
38	An AMPK–caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science, 2020, 367, 652-660.	6.0	183
39	Activation of RalA Is Required for Insulin-Stimulated Glut4 Trafficking to the Plasma Membrane via the Exocyst and the Motor Protein Myo1c. Developmental Cell, 2007, 13, 391-404.	3.1	182
40	Insulin signaling in health and disease. Journal of Clinical Investigation, 2021, 131, .	3.9	178
41	Synip. Molecular Cell, 1999, 3, 751-760.	4.5	176
42	Changes in integrin expression during adipocyte differentiation. Cell Metabolism, 2005, 2, 165-177.	7.2	169
43	Negative Feedback Regulation and Desensitization of Insulin- and Epidermal Growth Factor-stimulated p21ras Activation. Journal of Biological Chemistry, 1995, 270, 25320-25323.	1.6	160
44	You are what you secrete. Nature Medicine, 2001, 7, 887-888.	15.2	158
45	Regulation of Both Glycogen Synthase and PHAS-I by Insulin in Rat Skeletal Muscle Involves Mitogen-activated Protein Kinase-independent and Rapamycin-sensitive Pathways. Journal of Biological Chemistry, 1996, 271, 5033-5039.	1.6	156
46	T-ing up inflammation in fat. Nature Medicine, 2009, 15, 846-847.	15.2	153
47	Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. Journal of Cell Biology, 2001, 154, 829-840.	2.3	152
48	Insulin Generates an Enzyme Modulator from Hepatic Plasma Membranes: Regulation of Adenosine 3′, 5′-Monophosphate Phosphodiesterase, Pyruvate Dehydrogenase, and Adenylate Cyclase*. Endocrinology, 1987, 120, 967-972.	1.4	149
49	APS Facilitates c-Cbl Tyrosine Phosphorylation and GLUT4 Translocation in Response to Insulin in 3T3-L1 Adipocytes. Molecular and Cellular Biology, 2002, 22, 3599-3609.	1.1	147
50	Insulin-like Growth Factor-I-mediated Neurite Outgrowth in Vitro Requires Mitogen-activated Protein Kinase Activation. Journal of Biological Chemistry, 1997, 272, 21268-21273.	1.6	141
51	Preferred apical distribution of glycosyl-phosphatidylinositol (GPI) anchored proteins: A highly conserved feature of the polarized epithelial cell phenotype. Journal of Membrane Biology, 1990, 113, 155-167.	1.0	140
52	Activation of Mitogen-activated Protein Kinase and Phosphatidylinositol 3′-Kinase Is Not Sufficient for the Hormonal Stimulation of Glucose Uptake, Lipogenesis, or Glycogen Synthesis in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1995, 270, 3442-3446.	1.6	140
53	Inhibition of the cellular actions of nerve growth factor by staurosporine and K252A results from the attenuation of the activity of the trk tyrosine kinase. Biochemistry, 1992, 31, 4034-4039.	1.2	139
54	Desensitization of Ras Activation by a Feedback Disassociation of the SOS-Grb2 Complex. Journal of Biological Chemistry, 1995, 270, 20883-20886.	1.6	139

#	Article	IF	CITATIONS
55	Insulin-stimulated Tyrosine Phosphorylation of Caveolin Is Specific for the Differentiated Adipocyte Phenotype in 3T3-L1 Cells. Journal of Biological Chemistry, 1997, 272, 20706-20714.	1.6	138
56	The sorbin homology domain: A motif for the targeting of proteins to lipid rafts. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9098-9103.	3.3	138
57	Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-L1 adipocytes. Biochemical Journal, 1997, 324, 839-846.	1.7	133
58	Insulin Signaling in Microdomains of the Plasma Membrane. Traffic, 2003, 4, 711-716.	1.3	133
59	Activation of phosphatidylinositol-3 kinase by nerve growth factor involves indirect coupling of the trk proto-oncogene with src homology 2 domains. Neuron, 1992, 9, 769-777.	3.8	130
60	Inhibition of IKKÉ› and TBK1 Improves Glucose Control in a Subset of Patients with Type 2 Diabetes. Cell Metabolism, 2017, 26, 157-170.e7.	7.2	127
61	The tyrosine kinase inhibitor tyrphostin blocks the cellular actions of nerve growth factor. Biochemistry, 1993, 32, 4650-4658.	1.2	122
62	Inflammation produces catecholamine resistance in obesity via activation of PDE3B by the protein kinases IKKε and TBK1. ELife, 2013, 2, e01119.	2.8	118
63	Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Molecular Biology of the Cell, 2012, 23, 2955-2962.	0.9	117
64	The Stomatin/Prohibitin/Flotillin/HflK/C Domain of Flotillin-1 Contains Distinct Sequences That Direct Plasma Membrane Localization and Protein Interactions in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2005, 280, 16125-16134.	1.6	115
65	Structural Basis for Recruitment of the Adaptor Protein APS to the Activated Insulin Receptor. Molecular Cell, 2003, 12, 1379-1389.	4.5	113
66	IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. Journal of Hepatology, 2020, 72, 946-959.	1.8	113
67	Neutralization of Oxidized Phospholipids Ameliorates Non-alcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 189-206.e8.	7.2	113
68	Ral and Rheb GTPase Activating Proteins Integrate mTOR and GTPase Signaling in Aging, Autophagy, and Tumor Cell Invasion. Molecular Cell, 2014, 53, 209-220.	4.5	112
69	The Activation of Glycogen Synthase by Insulin Switches from Kinase Inhibition to Phosphatase Activation during Adipogenesis in 3T3-L1 Cells. Journal of Biological Chemistry, 1998, 273, 14063-14066.	1.6	110
70	Bone marrow–specific Cap gene deletion protects against high-fat diet–induced insulin resistance. Nature Medicine, 2007, 13, 455-462.	15.2	110
71	MGL1 promotes adipose tissue inflammation and insulin resistance by regulating 7/4hi monocytes in obesity. Journal of Experimental Medicine, 2009, 206, 3143-3156.	4.2	109
72	Compartmentalization of the Exocyst Complex in Lipid Rafts Controls Glut4 Vesicle Tethering. Molecular Biology of the Cell, 2006, 17, 2303-2311.	0.9	108

#	Article	IF	CITATIONS
73	Emerging functional roles for the glycosyl-phosphatidylinositol membrane protein anchor. Journal of Membrane Biology, 1990, 117, 1-10.	1.0	107
74	The Insulin Receptor Catalyzes the Tyrosine Phosphorylation of Caveolin-1. Journal of Biological Chemistry, 2002, 277, 30153-30158.	1.6	104
75	A Role for CAP, a Novel, Multifunctional Src Homology 3 Domain-containing Protein in Formation of Actin Stress Fibers and Focal Adhesions. Journal of Biological Chemistry, 1998, 273, 4073-4080.	1.6	103
76	Aldolase Mediates the Association of F-actin with the Insulin-responsive Glucose Transporter GLUT4. Journal of Biological Chemistry, 1999, 274, 17742-17747.	1.6	102
77	The TC10-interacting protein CIP4/2 is required for insulin-stimulated Glut4 translocation in 3T3L1 adipocytes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12835-12840.	3.3	102
78	Inositol glycan mimics the action of insulin on glucose utilization in rat adipocytes. Biochemical and Biophysical Research Communications, 1987, 149, 1084-1092.	1.0	100
79	Gapex-5, a Rab31 Guanine Nucleotide Exchange Factor that Regulates Glut4 Trafficking in Adipocytes. Cell Metabolism, 2007, 5, 59-72.	7.2	96
80	The Role of Protein Phosphatase-1 in Insulin Action. Endocrine Reviews, 2001, 56, 157-174.	7.1	96
81	Lipid phosphatases as drug discovery targets for type 2 diabetes. Nature Reviews Drug Discovery, 2006, 5, 333-342.	21.5	91
82	A role for AGL ubiquitination in the glycogen storage disorders of Lafora and Cori's disease. Genes and Development, 2007, 21, 2399-2409.	2.7	90
83	Insulin Resistance in the Defense against Obesity. Cell Metabolism, 2012, 15, 798-804.	7.2	90
84	A Ral GAP complex links PI 3-kinase/Akt signaling to RalA activation in insulin action. Molecular Biology of the Cell, 2011, 22, 141-152.	0.9	86
85	PTG gene deletion causes impaired glycogen synthesis and developmental insulin resistance. Journal of Clinical Investigation, 2003, 111, 1423-1432.	3.9	86
86	Small GTP-binding Protein TC10 Differentially Regulates Two Distinct Populations of Filamentous Actin in 3T3L1 Adipocytes. Molecular Biology of the Cell, 2002, 13, 2334-2346.	0.9	85
87	RalA-exocyst-dependent Recycling Endosome Trafficking Is Required for the Completion of Cytokinesis. Journal of Biological Chemistry, 2006, 281, 38609-38616.	1.6	85
88	Structural Basis of Ist1 Function and Ist1–Did2 Interaction in the Multivesicular Body Pathway and Cytokinesis. Molecular Biology of the Cell, 2009, 20, 3514-3524.	0.9	85
89	Identification of Binding Sites on Protein Targeting to Glycogen for Enzymes of Glycogen Metabolism. Journal of Biological Chemistry, 2000, 275, 35034-35039.	1.6	84
90	Atypical protein kinase C (PKCζ/λ) is a convergent downstream target of the insulin-stimulated phosphatidylinositol 3-kinase and TC10 signaling pathways. Journal of Cell Biology, 2004, 164, 279-290.	2.3	82

#	Article	IF	CITATIONS
91	TC10α Is Required for Insulin-Stimulated Glucose Uptake in Adipocytes. Endocrinology, 2007, 148, 27-33.	1.4	78
92	New therapeutic approaches for the treatment of obesity. Science Translational Medicine, 2016, 8, 323rv2.	5.8	78
93	Exocyst function regulated by effector phosphorylation. Nature Cell Biology, 2011, 13, 580-588.	4.6	76
94	Insulin stimulates the release from liver plasma membranes of a chemical modulator of pyruvate dehydrogenase. Biochemical and Biophysical Research Communications, 1981, 102, 1041-1047.	1.0	75
95	A subcutaneous adipose tissue–liver signalling axis controls hepatic gluconeogenesis. Nature Communications, 2015, 6, 6047.	5.8	75
96	Proliferin Induces Endothelial Cell Chemotaxis through a G Protein-Coupled, Mitogen-Activated Protein Kinase-Dependent Pathway*. Endocrinology, 1997, 138, 2835-2840.	1.4	73
97	The Roles of Cbl-b and c-Cbl in Insulin-stimulated Glucose Transport. Journal of Biological Chemistry, 2003, 278, 36754-36762.	1.6	73
98	Nerve growth factor binds to the 140 kd trk proto-oncogene product and stimulates its association with the src homology domain of phospholipase C γ1. Biochemical and Biophysical Research Communications, 1991, 179, 217-223.	1.0	71
99	Role of Protein Targeting to Glycogen (PTG) in the Regulation of Protein Phosphatase-1 Activity. Journal of Biological Chemistry, 1997, 272, 20198-20204.	1.6	71
100	Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1–mediated p62/sequestosome 1 phosphorylation. Hepatology, 2018, 68, 1331-1346.	3.6	70
101	Metabolic Crosstalk: Molecular Links Between Glycogen and Lipid Metabolism in Obesity. Diabetes, 2014, 63, 2935-2948.	0.3	69
102	Cloning and Characterization of a Functional Peroxisome Proliferator Activator Receptor-Î ³ -responsive Element in the Promoter of the CAP Gene. Journal of Biological Chemistry, 2000, 275, 9131-9135.	1.6	68
103	Roles for PI(3,5)P ₂ in nutrient sensing through TORC1. Molecular Biology of the Cell, 2014, 25, 1171-1185.	0.9	68
104	Insulin Signaling in the Control of Glucose and Lipid Homeostasis. Handbook of Experimental Pharmacology, 2015, 233, 51-71.	0.9	68
105	TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport. EMBO Journal, 2003, 22, 2679-2691.	3.5	65
106	Lipotransin. Molecular Cell, 1999, 4, 109-115.	4.5	64
107	Okadaic acid stimulates the activity of microtubule associated protein kinasein PC-12 pheochromocytoma cells. Biochemical and Biophysical Research Communications, 1990, 168, 1237-1243.	1.0	63
108	Stimulation of glycogen synthesis by insulin in human erythroleukemia cells requires the synthesis of glycosyl-phosphatidylinositol Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9665-9669.	3.3	62

#	Article	IF	CITATIONS
109	GTP Hydrolysis by the Rho Family GTPase TC10 Promotes Exocytic Vesicle Fusion. Developmental Cell, 2006, 11, 411-421.	3.1	62
110	Negative Modulation of Membrane Localization of the Raf-1 Protein Kinase by Hyperphosphorylation. Journal of Biological Chemistry, 1997, 272, 3915-3923.	1.6	61
111	Spatial compartmentalization of signal transduction in insulin action. BioEssays, 2001, 23, 215-222.	1.2	60
112	Insulin-stimulated Interaction between Insulin Receptor Substrate 1 and p85α and Activation of Protein Kinase B/Akt Require Rab5. Journal of Biological Chemistry, 2006, 281, 27982-27990.	1.6	59
113	TANK-Binding Kinase 1 Regulates the Localization of Acyl-CoA Synthetase ACSL1 to Control Hepatic Fatty Acid Oxidation. Cell Metabolism, 2020, 32, 1012-1027.e7.	7.2	59
114	Putative mediators of insulin action regulate hepatic acetyl CoA carboxylase activity. Biochemical and Biophysical Research Communications, 1983, 110, 789-795.	1.0	58
115	Localization of the Insulin-like Growth Factor I Receptor Binding Sites for the SH2 Domain Proteins p85, Syp, and GTPase Activating Protein. Journal of Biological Chemistry, 1995, 270, 19151-19157.	1.6	58
116	Nerve Growth Factor Stimulates the Tyrosine Phosphorylation of Endogenous Crk-II and Augments Its Association with p130Cas in PC-12 Cells. Journal of Biological Chemistry, 1996, 271, 7375-7380.	1.6	58
117	The paradoxical regulation of protein phosphorylation in insulin action. FASEB Journal, 1994, 8, 1034-1040.	0.2	55
118	FGF21 promotes thermogenic gene expression as an autocrine factor in adipocytes. Cell Reports, 2021, 35, 109331.	2.9	55
119	Mitogen-activated protein kinase kinase inhibition decreases growth hormone stimulated transcription mediated by STAT5. Molecular and Cellular Endocrinology, 1997, 133, 169-176.	1.6	54
120	Growth factor induced MEK activation is primarily mediated by an activator different from c-raf. Biochemistry, 1994, 33, 5595-5599.	1.2	53
121	The Role of Glucose Metabolites in the Activation and Translocation of Glycogen Synthase by Insulin in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1999, 274, 27497-27504.	1.6	53
122	Rab5 Proteins Regulate Activation and Localization of Target of Rapamycin Complex 1. Journal of Biological Chemistry, 2012, 287, 20913-20921.	1.6	53
123	The Regulation of Glycogen Synthase by Protein Phosphatase 1 in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1997, 272, 29698-29703.	1.6	52
124	The Functional Role of CrkII in Actin Cytoskeleton Organization and Mitogenesis. Journal of Biological Chemistry, 1999, 274, 3001-3008.	1.6	51
125	CAP interacts with cytoskeletal proteins and regulates adhesion-mediated ERK activation and motility. EMBO Journal, 2006, 25, 5284-5293.	3.5	51
126	Insulin Stimulates Phosphatidylinositol 3-Phosphate Production via the Activation of Rab5. Molecular Biology of the Cell, 2008, 19, 2718-2728.	0.9	50

#	Article	lF	CITATIONS
127	Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans. Molecular Metabolism, 2016, 5, 5-18.	3.0	50
128	From overnutrition to liver injury: AMP-activated protein kinase in nonalcoholic fatty liver diseases. Journal of Biological Chemistry, 2020, 295, 12279-12289.	1.6	50
129	The distribution of glycosyl-phosphatidylinositol anchored proteins is differentially regulated by serum and insulin. Biochemical and Biophysical Research Communications, 1989, 164, 824-832.	1.0	49
130	The Role of 4-phosphonodifluoromethyl- and 4-phosphono-phenylalanine in the selectivity and cellular uptake of SH2 domain ligands. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1909-1914.	1.0	49
131	Amylin increases cyclic AMP formation in L6 myocytes through calcitonin gene-related peptide receptors. Biochemical and Biophysical Research Communications, 1991, 177, 771-776.	1.0	47
132	Role of Mitogen-activated Protein Kinase Kinase in Regulation of the Epidermal Growth Factor Receptor by Protein Kinase C. Journal of Biological Chemistry, 1996, 271, 12891-12896.	1.6	47
133	Cloning and Functional Characterization of Related TC10 Isoforms, a Subfamily of Rho Proteins Involved in Insulin-stimulated Glucose Transport. Journal of Biological Chemistry, 2002, 277, 13067-13073.	1.6	47
134	p75 neurotrophin receptor regulates glucose homeostasis and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5838-5843.	3.3	47
135	Differences in Gene Expression Profiles of Diabetic and Nondiabetic Patients Undergoing Cardiopulmonary Bypass and Cardioplegic Arrest. Circulation, 2004, 110, II-280-II-286.	1.6	43
136	SRA Regulates Adipogenesis by Modulating p38/JNK Phosphorylation and Stimulating Insulin Receptor Gene Expression and Downstream Signaling. PLoS ONE, 2014, 9, e95416.	1.1	43
137	Metabolic effects of troglitazone in the Goto-Kakizaki rat, a non-obese and normolipidemic rodent model of non-insulin-dependent diabetes mellitus. Metabolism: Clinical and Experimental, 1997, 46, 192-198.	1.5	42
138	A Rab10:RalA G protein cascade regulates insulin-stimulated glucose uptake in adipocytes. Molecular Biology of the Cell, 2014, 25, 3059-3069.	0.9	42
139	p75 Neurotrophin Receptor Regulates Energy Balance in Obesity. Cell Reports, 2016, 14, 255-268.	2.9	42
140	β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. Journal of Clinical Investigation, 2022, 132, .	3.9	42
141	The Exocytotic Trafficking of TC10 Occurs through both Classical and Nonclassical Secretory Transport Pathways in 3T3L1 Adipocytes. Molecular and Cellular Biology, 2003, 23, 961-974.	1.1	39
142	Phosphoinositides: Key modulators of energy metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 857-866.	1.2	39
143	Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. Journal of Cell Science, 2017, 130, 3517-3531.	1.2	39
144	Epidermal Growth Factor Receptor Targeting Prevents Uncoupling of the Grb2-SOS Complex. Journal of Biological Chemistry, 1996, 271, 8300-8306.	1.6	38

#	Article	IF	CITATIONS
145	<i>Chop</i> / <i>Ddit3</i> depletion in β cells alleviates ER stress and corrects hepatic steatosis in mice. Science Translational Medicine, 2021, 13, .	5.8	38
146	The specific protein phosphatase inhibitor okadaic acid differentially modulates insulin action. Journal of Cellular Biochemistry, 1991, 45, 374-380.	1.2	37
147	Cloning and identification of MYPT3: a prenylatable myosin targetting subunit of protein phosphatase 1. Biochemical Journal, 2001, 356, 257-267.	1.7	37
148	Short-term action of insulin onAplysia neurons: Generation of a possible novel modulator of ion channels. Journal of Neurobiology, 1991, 22, 55-62.	3.7	36
149	Carboxylic Acid Derivatives of Amlexanox Display Enhanced Potency toward TBK1 and IKK <i>ε</i> and Reveal Mechanisms for Selective Inhibition. Molecular Pharmacology, 2018, 94, 1210-1219.	1.0	36
150	RalA controls glucose homeostasis by regulating glucose uptake in brown fat. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7819-7824.	3.3	36
151	Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature, 2021, 599, 296-301.	13.7	36
152	The role of glycosyl-phosphoinositides in hormone action. Journal of Bioenergetics and Biomembranes, 1991, 23, 29-41.	1.0	36
153	Cellular mechanisms of signal transduction for neurotrophins. BioEssays, 1994, 16, 405-411.	1.2	35
154	Otopetrin 1 Protects Mice From Obesity-Associated Metabolic Dysfunction Through Attenuating Adipose Tissue Inflammation. Diabetes, 2014, 63, 1340-1352.	0.3	35
155	Zinc Finger Protein 407 (ZFP407) Regulates Insulin-stimulated Glucose Uptake and Glucose Transporter 4 (Glut4) mRNA. Journal of Biological Chemistry, 2015, 290, 6376-6386.	1.6	34
156	Phosphorylation of the exocyst protein Exo84 by TBK1 promotes insulin-stimulated GLUT4 trafficking. Science Signaling, 2017, 10, .	1.6	34
157	Section Review: Oncologic, Endocrine & Metabolic: Thiazolidinediones. Expert Opinion on Investigational Drugs, 1995, 4, 1299-1309.	1.9	33
158	c-Myc Does Not Require Max for Transcriptional Activity in PC-12 Cells. Molecular and Cellular Neurosciences, 1994, 5, 277-282.	1.0	32
159	Putting the Brakes on Insulin Signaling. New England Journal of Medicine, 2003, 349, 2560-2562.	13.9	32
160	The Lipid Kinase PI4KIIIÎ ² Is Highly Expressed in Breast Tumors and Activates Akt in Cooperation with Rab11a. Molecular Cancer Research, 2014, 12, 1492-1508.	1.5	32
161	Identification of CAP as a Costameric Protein that Interacts with Filamin C. Molecular Biology of the Cell, 2007, 18, 4731-4740.	0.9	31
162	Novel phosphotyrosine mimetics in the design of peptide ligands for pp60src SH2 domain. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1209-1214.	1.0	30

#	Article	IF	CITATIONS
163	Design of peptidomimetic ligands for the pp60src SH2 domain. Bioorganic and Medicinal Chemistry, 1997, 5, 41-47.	1.4	30
164	ERRÎ ³ Preserves Brown Fat Innate Thermogenic Activity. Cell Reports, 2018, 22, 2849-2859.	2.9	30
165	Design, synthesis, and biological activity of substituted 2-amino-5-oxo-5H-chromeno[2,3-b]pyridine-3-carboxylic acid derivatives as inhibitors of the inflammatory kinases TBK1 and IKKIµ for the treatment of obesity. Bioorganic and Medicinal Chemistry, 2018. 26. 5443-5461.	1.4	29
166	Regulation of System A Amino Acid Transport in 3T3-L1 Adipocytes by Insulin. Journal of Biological Chemistry, 1998, 273, 3173-3179.	1.6	28
167	Distinct mutations in the glycogen debranching enzyme found in glycogen storage disease type III lead to impairment in diverse cellular functions. Human Molecular Genetics, 2009, 18, 2045-2052.	1.4	28
168	Proliferin Induces Endothelial Cell Chemotaxis through a G Protein-Coupled, Mitogen-Activated Protein Kinase-Dependent Pathway. Endocrinology, 1997, 138, 2835-2840.	1.4	28
169	Nuclear Magnetic Resonance Solution Structure of the Growth Factor Receptor-Bound Protein 2 Src Homology 2 Domain. Biochemistry, 1996, 35, 11852-11864.	1.2	27
170	Targeting signal transduction in the discovery of antiproliferative drugs. Chemistry and Biology, 1996, 3, 887-893.	6.2	27
171	Cloning and identification of MYPT3: a prenylatable myosin targetting subunit of protein phosphatase 1. Biochemical Journal, 2001, 356, 257.	1.7	26
172	Gene expression changes in subcutaneous adipose tissue due to Cushing's disease. Journal of Molecular Endocrinology, 2015, 55, 81-94.	1.1	25
173	Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nature Metabolism, 2020, 2, 620-634.	5.1	25
174	Thiazolidinediones are novel insulin-sensitizing agents. Current Opinion in Endocrinology, Diabetes and Obesity, 1995, 2, 341-347.	0.6	24
175	YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15184-15193.	3.3	24
176	Expression of a Catalytically Inert SYP Blocks Activation of Map Kinase Pathway Downstream of P21ras. Biochemical and Biophysical Research Communications, 1995, 214, 737-743.	1.0	23
177	Inhibition of binding of phospholipase Cγ1 SH2 domains to phosphorylated epidermal growth factor receptor by phosphorylated peptides. International Journal of Peptide and Protein Research, 1993, 42, 240-248.	0.1	23
178	Another hormone-sensitive triglyceride lipase in fat cells?. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 535-537.	3.3	22
179	Activation of Glycogen Synthase by Insulin in 3T3-L1 Adipocytes Involves c-Cbl-associating Protein (CAP)-dependent and CAP-independent Signaling Pathways. Journal of Biological Chemistry, 2001, 276, 6065-6068.	1.6	22
180	TC10 and Insulin timulated Glucose Transport. Methods in Enzymology, 2006, 406, 701-714.	0.4	22

#	Article	IF	CITATIONS
181	Functional consequences of lipid-mediated protein-membrane interactions. Biochemical Pharmacology, 1991, 42, 1-11.	2.0	21
182	Regulation of Thyroid Adenylate Cyclase: Guanyl Nucleotide Modulation of Thyrotropin Receptor-Adenylate Cyclase Function*. Endocrinology, 1981, 109, 1578-1589.	1.4	19
183	Pleiotropic signaling from receptor tyrosine kinases. Current Opinion in Neurobiology, 1993, 3, 352-359.	2.0	19
184	Spatial determinants of specificity in insulin action. Molecular and Cellular Biochemistry, 1998, 182, 65-71.	1.4	19
185	Cloning and Characterization of Cbl-associated Protein Splicing Isoforms. Molecular Medicine, 2003, 9, 18-25.	1.9	19
186	Fishing Out a Sensor for Anti-inflammatory Oils. Cell, 2010, 142, 672-674.	13.5	19
187	Gene Expression Signature in Adipose Tissue of Acromegaly Patients. PLoS ONE, 2015, 10, e0129359.	1.1	19
188	Circadian Metabolic Regulation through Crosstalk between Casein Kinase 1δ and Transcriptional Coactivator PGC-1α. Molecular Endocrinology, 2011, 25, 2084-2093.	3.7	18
189	Apparent "negative cooperativity―kinetics in the absence of a nonlinear Scatchard plot of thyrotropin-receptor interaction in a human thyroid adenoma. Biochemical and Biophysical Research Communications, 1980, 95, 395-403.	1.0	17
190	Synthesis of phosphatidylinositol in rat liver microsomes is accompanied by the rapid formation of lysophosphatidylinositol. Lipids and Lipid Metabolism, 1991, 1084, 269-278.	2.6	17
191	Fatty acid remodelling of phosphatidylinositol under conditions of de novo synthesis in rat liver microsomes. Lipids and Lipid Metabolism, 1991, 1084, 279-291.	2.6	17
192	Coenzyme A-dependent, ATP-independent acylation of 2-acyl lysophosphatidylinositol in rat liver microsomes. Lipids and Lipid Metabolism, 1991, 1084, 292-299.	2.6	17
193	The Stimulation of pp42mapkinase by Insulin Does Not Correlate with Its Metabolic Actions in Cells Overexpressing Mutant Insulin Receptors. Biochemical and Biophysical Research Communications, 1993, 196, 301-310.	1.0	17
194	Bi-allelic Variants in RALGAPA1 Cause Profound Neurodevelopmental Disability, Muscular Hypotonia, Infantile Spasms, and Feeding Abnormalities. American Journal of Human Genetics, 2020, 106, 246-255.	2.6	17
195	Mutational analysis of the coding regions of the genes encoding protein kinase B-alpha and -beta, phosphoinositide-dependent protein kinase-1, phosphatase targeting to glycogen, protein phosphatase inhibitor-1, and glycogenin: lessons from a search for genetic variability of the insulin-stimulated glycogen synthesis pathway of skeletal muscle in NIDDM patients. Diabetes. 1999. 48. 403-407.	0.3	16
196	Spatial Compartmentalization in the Regulation of Glucose Metabolism by Insulin. Trends in Endocrinology and Metabolism, 1999, 10, 408-413.	3.1	16
197	More TORC for the gluconeogenic engine. BioEssays, 2006, 28, 231-234.	1.2	15
198	Troglitazone Increases System A Amino Acid Transport in 3T3-L1 Cells. Endocrinology, 1998, 139, 832-837.	1.4	14

#	Article	IF	CITATIONS
199	Negative Regulation of the RalGAP Complex by 14-3-3. Journal of Biological Chemistry, 2013, 288, 9272-9283.	1.6	14
200	Thyrotropin binding to porcine thyroid plasma membranes: Kinetic and thermodynamic analyses. Molecular and Cellular Endocrinology, 1982, 28, 299-312.	1.6	13
201	NBR1 is a critical step in the repression of thermogenesis of p62-deficient adipocytes through PPARÎ ³ . Nature Communications, 2021, 12, 2876.	5.8	13
202	Roles of IκB kinases and TANK-binding kinase 1 in hepatic lipid metabolism and nonalcoholic fatty liver disease. Experimental and Molecular Medicine, 2021, 53, 1697-1705.	3.2	13
203	Diversity in cellular signaling for nerve growth factor and insulin: Variations on a common theme. Molecular and Cellular Endocrinology, 1991, 81, C197-C202.	1.6	12
204	Autophagy Works Out. Cell Metabolism, 2012, 15, 273-274.	7.2	12
205	A complex role for adipose tissue macrophages. Nature Reviews Endocrinology, 2014, 10, 193-194.	4.3	12
206	Closing in on the cause of insulin resistance and type 2 diabetes. Journal of Clinical Investigation, 1999, 104, 675-676.	3.9	12
207	White, Brown, and Beige; Type 2 Immunity Gets Hot. Immunity, 2015, 42, 15-17.	6.6	11
208	Interaction of Adipocyte Metabolic and Immune Functions Through TBK1. Frontiers in Immunology, 2020, 11, 592949.	2.2	11
209	The Role of Glycosylphosphoinositides in Signal Transduction. , 1989, 45, 353-382.		11
210	Cloning and characterization of Cbl-associated protein splicing isoforms. Molecular Medicine, 2003, 9, 18-25.	1.9	11
211	Regulation of the Mouse Protein Targeting to Glycogen (PTG) Promoter by the FoxA2 Forkhead Protein and by 3′,5′-Cyclic Adenosine 5′-Monophosphate in H4IIE Hepatoma Cells. Endocrinology, 2006, 147, 3606-3612.	1.4	10
212	Ral's engagement with the exocyst: Breaking up is hard to do. Cell Cycle, 2011, 10, 2299-2304.	1.3	10
213	TC10 Is Regulated by Caveolin in 3T3-L1 Adipocytes. PLoS ONE, 2012, 7, e42451.	1.1	10
214	Insulin htts on Autophagy. Autophagy, 2006, 2, 250-253.	4.3	9
215	TIRFing out Studies on Glut4 Trafficking. Developmental Cell, 2007, 12, 4-5.	3.1	9
216	Phosphoinositides in Insulin Action and Diabetes. Current Topics in Microbiology and Immunology, 2012, 362, 61-85.	0.7	9

#	Article	IF	CITATIONS
217	Dissociation kinetics of the thyrotropin-receptor complex. Molecular and Cellular Endocrinology, 1981, 24, 219-231.	1.6	8
218	Signal transduction in insulin action. Journal of Nutritional Biochemistry, 1990, 1, 180-188.	1.9	8
219	Second messengers of insulin action. Trends in Endocrinology and Metabolism, 1990, 1, 158-163.	3.1	7
220	Structure-based design of novel, dipeptide ligands targeting the pp60Src SH2 domain. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1107-1112.	1.0	7
221	Staying in SHIP shape. Nature Medicine, 2005, 11, 123-124.	15.2	7
222	FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition. Journal of Clinical Investigation, 2021, 131, .	3.9	7
223	Developmentally regulated testicular galactolipid sulfotransferase inhibitor is a phosphoinositol glycerolipid and insulin-mimetic. Molecular Reproduction and Development, 1994, 37, 462-466.	1.0	6
224	Inducible expression of a mutant form of MEK1 in Swiss 3T3 cells. , 1997, 67, 367-377.		6
225	Countering inflammatory signals in obesity. Nature Immunology, 2014, 15, 410-411.	7.0	5
226	Inflammation keeps old mice healthy. Nature, 2015, 528, 44-46.	13.7	5
227	Synthesis of deuteriumâ€labelled amlexanox and its metabolic stability against mouse, rat, and human microsomes. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 202-208.	0.5	5
228	Muscle or Fat? Rho Bridges the GAP. Cell, 2003, 113, 144-145.	13.5	4
229	Derepressing Nuclear Receptors for Metabolic Adaptation. Cell, 2011, 147, 717-718.	13.5	4
230	Holding the line on hepatic fat. Cell Metabolism, 2005, 2, 1-2.	7.2	3
231	A Futile Approach to Fighting Obesity?. Cell, 2015, 163, 539-540.	13.5	3
232	Structural and Functional Roles of Glycosylphosphoinositides. Sub-Cellular Biochemistry, 1996, 26, 165-185.	1.0	3
233	p300 or CBP is required for insulin-stimulated glucose uptake in skeletal muscle and adipocytes. JCI Insight, 2022, 7, .	2.3	3
234	Differentiation of peptide molecular recognition by phospholipase Cγâ€1 Src homologyâ€2 domain and a mutant Tyr phosphatase PTP1b ^{C215S} . Protein Science, 1995, 4, 13-20.	3.1	2

0

#	Article	IF	CITATIONS
235	Chapter 4 Cellular mechanisms of signal transduction for growth factors. Advances in Molecular and Cellular Endocrinology, 1998, , 83-97.	0.1	2
236	A TUG on glucose transport. Nature Medicine, 2003, 9, 1352-1352.	15.2	2
237	Insulin Action, Post-Receptor Mechanisms. , 2004, , 14-22.		2
238	Von Gierke's Disease Adopts an Orphan (and Its Partner). Science Signaling, 2009, 2, pe8.	1.6	2
239	Subcellular Compartmentalization of Insulin Signaling Processes and GLUT4 Trafficking Events. , 2007, , 33-51.		2
240	Diversity in Cellular Signaling for Nerve Growth Factor and Insulin: Variations On a Common Theme. Journal of Investigative Dermatology, 1992, 98, S17-S20.	0.3	1
241	Creatine Fuels the Thermic Effect of Feeding. Cell Metabolism, 2017, 26, 594-595.	7.2	1
242	Regulation of Glycosyl-phosphoinositides in Mammalian Cells. Methods, 1993, 3, 119-124.	0.5	0
243	Hyaluronan as a potential thermogenic rheostat. Nature Metabolism, 2019, 1, 503-504.	5.1	0

244 Second Messengers of Insulin Action. , 1990, , 391-399.