Yanteng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7049255/publications.pdf Version: 2024-02-01

Υλητένο Ζηλο

#	Article	IF	CITATIONS
1	Fabrication and properties of novel chitosan/ZnO composite bioplastic. Cellulose, 2022, 29, 233-243.	2.4	15
2	The methylation of SDC2 and TFPI2 defined three methylator phenotypes of colorectal cancer. BMC Gastroenterology, 2022, 22, 88.	0.8	5
3	Bio-polyols based waterborne polyurethane coatings reinforced with chitosan-modified ZnO nanoparticles. International Journal of Biological Macromolecules, 2022, 208, 97-104.	3.6	14
4	Self-Healing Hyaluronic Acid Nanocomposite Hydrogels with Platelet-Rich Plasma Impregnated for Skin Regeneration. ACS Nano, 2022, 16, 11346-11359.	7.3	70
5	Construction of conductive hydroxyethyl cellulose/soy protein isolate/polypyrrole composite sponges and their performances. Cellulose, 2021, 28, 8527-8539.	2.4	1
6	Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. International Journal of Biological Macromolecules, 2020, 162, 1627-1641.	3.6	54
7	Self-assembly of chitosan and cellulose chains into a 3D porous polysaccharide alloy films: Co-dissolving, structure and biological properties. Applied Surface Science, 2019, 493, 1032-1041.	3.1	14
8	Shape memory histocompatible and biodegradable sponges for subcutaneous defect filling and repair: greatly reducing surgical incision. Journal of Materials Chemistry B, 2019, 7, 5848-5860.	2.9	23
9	Construction of highly biocompatible hydroxyethyl cellulose/soy protein isolate composite sponges for tissue engineering. Chemical Engineering Journal, 2018, 341, 402-413.	6.6	35
10	MicroRNA-30a Mediates Cell Migration and Invasion by Targeting Metadherin in Colorectal Cancer. Technology in Cancer Research and Treatment, 2018, 17, 153303381875810.	0.8	19
11	Enhanced Peripheral Nerve Regeneration by a High Surface Area to Volume Ratio of Nerve Conduits Fabricated from Hydroxyethyl Cellulose/Soy Protein Composite Sponges. ACS Omega, 2017, 2, 7471-7481.	1.6	29
12	Strong and Rapidly Selfâ€Healing Hydrogels: Potential Hemostatic Materials. Advanced Healthcare Materials, 2016, 5, 2813-2822.	3.9	138
13	Cellulose/soy protein composite-based nerve guidance conduits with designed microstructure for peripheral nerve regeneration. Journal of Neural Engineering, 2016, 13, 056019.	1.8	21
14	Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels. Biomacromolecules, 2016, 17, 2839-2848.	2.6	87
15	Hydrogels: Strong and Rapidly Self-Healing Hydrogels: Potential Hemostatic Materials (Adv.) Tj ETQq1 1 0.7843	14 rg.BT /(Overlock 10 T
16	Epichlorohydrin-Cross-linked Hydroxyethyl Cellulose/Soy Protein Isolate Composite Films as Biocompatible and Biodegradable Implants for Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 2781-2795.	4.0	120
17	Fabrication and evaluation of physical properties and cytotoxicity of zein-based polyurethanes. Journal of Materials Science: Materials in Medicine, 2014, 25, 823-833.	1.7	12
18	Construction of Chitin/PVA Composite Hydrogels with Jellyfish Gel-Like Structure and Their Biocompatibility. Biomacromolecules, 2014, 15, 3358-3365.	2.6	101

#	Article	IF	CITATIONS
19	Fast Contact of Solid–Liquid Interface Created High Strength Multi-Layered Cellulose Hydrogels with Controllable Size. ACS Applied Materials & Interfaces, 2014, 6, 1872-1878.	4.0	87