Yanteng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7049255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strong and Rapidly Selfâ€Healing Hydrogels: Potential Hemostatic Materials. Advanced Healthcare Materials, 2016, 5, 2813-2822.	3.9	138
2	Epichlorohydrin-Cross-linked Hydroxyethyl Cellulose/Soy Protein Isolate Composite Films as Biocompatible and Biodegradable Implants for Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 2781-2795.	4.0	120
3	Construction of Chitin/PVA Composite Hydrogels with Jellyfish Gel-Like Structure and Their Biocompatibility. Biomacromolecules, 2014, 15, 3358-3365.	2.6	101
4	Fast Contact of Solid–Liquid Interface Created High Strength Multi-Layered Cellulose Hydrogels with Controllable Size. ACS Applied Materials & Interfaces, 2014, 6, 1872-1878.	4.0	87
5	Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels. Biomacromolecules, 2016, 17, 2839-2848.	2.6	87
6	Self-Healing Hyaluronic Acid Nanocomposite Hydrogels with Platelet-Rich Plasma Impregnated for Skin Regeneration. ACS Nano, 2022, 16, 11346-11359.	7.3	70
7	Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. International Journal of Biological Macromolecules, 2020, 162, 1627-1641.	3.6	54
8	Construction of highly biocompatible hydroxyethyl cellulose/soy protein isolate composite sponges for tissue engineering. Chemical Engineering Journal, 2018, 341, 402-413.	6.6	35
9	Enhanced Peripheral Nerve Regeneration by a High Surface Area to Volume Ratio of Nerve Conduits Fabricated from Hydroxyethyl Cellulose/Soy Protein Composite Sponges. ACS Omega, 2017, 2, 7471-7481.	1.6	29
10	Shape memory histocompatible and biodegradable sponges for subcutaneous defect filling and repair: greatly reducing surgical incision. Journal of Materials Chemistry B, 2019, 7, 5848-5860.	2.9	23
11	Cellulose/soy protein composite-based nerve guidance conduits with designed microstructure for peripheral nerve regeneration. Journal of Neural Engineering, 2016, 13, 056019.	1.8	21
12	MicroRNA-30a Mediates Cell Migration and Invasion by Targeting Metadherin in Colorectal Cancer. Technology in Cancer Research and Treatment, 2018, 17, 153303381875810.	0.8	19
13	Fabrication and properties of novel chitosan/ZnO composite bioplastic. Cellulose, 2022, 29, 233-243.	2.4	15
14	Self-assembly of chitosan and cellulose chains into a 3D porous polysaccharide alloy films: Co-dissolving, structure and biological properties. Applied Surface Science, 2019, 493, 1032-1041.	3.1	14
15	Bio-polyols based waterborne polyurethane coatings reinforced with chitosan-modified ZnO nanoparticles. International Journal of Biological Macromolecules, 2022, 208, 97-104.	3.6	14
16	Fabrication and evaluation of physical properties and cytotoxicity of zein-based polyurethanes. Journal of Materials Science: Materials in Medicine, 2014, 25, 823-833.	1.7	12
17	The methylation of SDC2 and TFPI2 defined three methylator phenotypes of colorectal cancer. BMC Gastroenterology, 2022, 22, 88.	0.8	5

Hydrogels: Strong and Rapidly Self-Healing Hydrogels: Potential Hemostatic Materials (Adv.) Tj ETQq0 0 0 rgBT /Ovgrlock 10 Tf 50 62 Td

#	Article	IF	CITATIONS
19	Construction of conductive hydroxyethyl cellulose/soy protein isolate/polypyrrole composite sponges and their performances. Cellulose, 2021, 28, 8527-8539.	2.4	1