Yongfeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7048989/publications.pdf Version: 2024-02-01

YONGEENG LL

#	Article	IF	CITATIONS
1	Defect-induced magnetism in undoped wide band gap oxides: Zinc vacancies in ZnO as an example. AIP Advances, 2011, 1, .	0.6	179
2	Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Materials, 2012, 4, e30-e30.	3.8	137
3	Bound magnetic polarons and p-d exchange interaction in ferromagnetic insulating Cu-doped ZnO. Applied Physics Letters, 2011, 98, .	1.5	116
4	Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation. Scientific Reports, 2012, 2, 442.	1.6	110
5	Characterization of biaxial stress and its effect on optical properties of ZnO thin films. Applied Physics Letters, 2007, 91, 021915.	1.5	96
6	Tuning ferromagnetism in MgxZn1â^'xO thin films by band gap and defect engineering. Applied Physics Letters, 2010, 97, .	1.5	90
7	Bandgap engineering of Cu2CdxZn1â^'xSnS4 alloy for photovoltaic applications: A complementary experimental and first-principles study. Journal of Applied Physics, 2013, 114, .	1.1	88
8	X-ray photoelectron spectroscopy measurement of n-ZnO/p-NiO heterostructure valence-band offset. Applied Physics Letters, 2009, 94, .	1.5	84
9	Electrostatic Modulation of LaAlO ₃ /SrTiO ₃ Interface Transport in an Electric Double‣ayer Transistor. Advanced Materials Interfaces, 2014, 1, 1300001.	1.9	75
10	Device Performance of the Mott Insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>LaVO</mml:mi></mml:mrow><mml:mrow> a Photovoltaic Material. Physical Review Applied, 2015, 3, .</mml:mrow></mml:msub></mml:mrow></mml:math 	:mm 1:5 mn>	3 73<br 3<
11	Role of donor-acceptor complexes and impurity band in stabilizing ferromagnetic order in Cu-doped SnO2 thin films. Applied Physics Letters, 2012, 100, 172402.	1.5	71
12	Valence-band offset of epitaxial ZnOâ^•MgO (111) heterojunction determined by x-ray photoelectron spectroscopy. Applied Physics Letters, 2008, 92, .	1.5	59
13	Realization of p-type conduction in undoped MgxZn1â^'xO thin films by controlling Mg content. Applied Physics Letters, 2007, 91, 232115.	1.5	58
14	Biaxial stress-dependent optical band gap, crystalline, and electronic structure in wurtzite ZnO: Experimental and <i>ab initio</i> study. Journal of Applied Physics, 2008, 104, .	1.1	57
15	Investigation on the formation mechanism of p-type Li–N dual-doped ZnO. Applied Physics Letters, 2010, 97, 222101.	1.5	57
16	Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide. Physical Review B, 2013, 87, .	1.1	49
17	Tuning magnetoresistance and exchange coupling in ZnO by doping transition metals. Applied Physics Letters, 2011, 99, 222503.	1.5	48
18	Ultraviolet electroluminescence from n-ZnO/p-NiO heterojunction light-emitting diode. Journal of Luminescence, 2013, 134, 240-243.	1.5	48

#	Article	IF	CITATIONS
19	Evidence of cation vacancy induced room temperature ferromagnetism in Li-N codoped ZnO thin films. Applied Physics Letters, 2011, 99, 182503.	1.5	47
20	A Template and Catalyst-Free Metal-Etching-Oxidation Method to Synthesize Aligned Oxide Nanowire Arrays: NiO as an Example. ACS Nano, 2010, 4, 4785-4791.	7.3	44
21	An experimental and first-principles study on band alignments at interfaces of Cu ₂ ZnSnS ₄ /CdS/ZnO heterojunctions. Journal Physics D: Applied Physics, 2014, 47, 075304.	1.3	44
22	MgZnO/ZnO p–n junction UV photodetector fabricated on sapphire substrate by plasma-assisted molecular beam epitaxy. Solid State Sciences, 2010, 12, 1567-1569.	1.5	42
23	Ultraviolet Electroluminescence from ZnS@ZnO Core–Shell Nanowires/p-GaN Introduced by Exciton Localization. ACS Applied Materials & Interfaces, 2016, 8, 1661-1666.	4.0	42
24	Electron doping of Sr ₂ FeMoO _{6â~'î´} as high performance anode materials for solid oxide fuel cells. Journal of Materials Chemistry A, 2019, 7, 733-743.	5.2	42
25	Doping efficiency, optical and electrical properties of nitrogen-doped ZnO films. Journal of Applied Physics, 2011, 109, .	1.1	39
26	Shallow Acceptor State in Mg-Doped CuAlO ₂ and Its Effect on Electrical and Optical Properties: An Experimental and First-Principles Study. ACS Applied Materials & Interfaces, 2017, 9, 12608-12616.	4.0	35
27	Effect on nitrogen acceptor as Mg is alloyed into ZnO. Applied Physics Letters, 2008, 92, 062110.	1.5	34
28	Annealing temperature dependent electrical and optical properties of ZnO and MgZnO films in hydrogen ambient. Applied Surface Science, 2009, 255, 6745-6749.	3.1	34
29	Ultraviolet photodiode based on p-Mg _{0.2} Zn _{0.8} O/n-ZnO heterojunction with wide response range. Journal Physics D: Applied Physics, 2009, 42, 105102.	1.3	31
30	Improving the Back Electrode Interface Quality of Cu ₂ ZnSn(S,Se) ₄ Thin-Film Solar Cells Using a Novel CuAlO ₂ Buffer Layer. ACS Applied Energy Materials, 2019, 2, 2230-2237.	2.5	31
31	Tunable photovoltaic effect and solar cell performance of self-doped perovskite SrTiO3. AIP Advances, 2012, 2, .	0.6	28
32	Wavelength-Tuned Light Emission via Modifying the Band Edge Symmetry: Doped SnO ₂ as an Example. Journal of Physical Chemistry C, 2014, 118, 6365-6371.	1.5	28
33	Phase Selection Enabled Formation of Abrupt Axial Heterojunctions in Branched Oxide Nanowires. Nano Letters, 2012, 12, 275-280.	4.5	27
34	A comparative study on electroluminescence from ZnO-based double heterojunction light emitting diodes grown on different lattice mismatch substrates. Journal of Alloys and Compounds, 2013, 575, 233-238.	2.8	27
35	Photoresponse enhancement in SnO2-based ultraviolet photodetectors via coupling with surface plasmons of Ag particles. Journal of Alloys and Compounds, 2018, 748, 398-403.	2.8	27
36	Influence of Zn/O ratio on structural, electrical and optical properties of ZnO thin films fabricated by plasma-assisted molecular beam epitaxy. Journal of Alloys and Compounds, 2010, 503, 155-158.	2.8	26

#	Article	IF	CITATIONS
37	Chemical states of gold doped in ZnO films and its effect on electrical and optical properties. Journal of Alloys and Compounds, 2014, 585, 479-484.	2.8	26
38	Band alignments at interface of Cu2ZnSnS4/ZnO heterojunction: An X-ray photoelectron spectroscopy and first-principles study. Journal of Alloys and Compounds, 2015, 628, 293-297.	2.8	26
39	Effect of Mg doping on optical and electrical properties of SnO2 thin films: An experiment and first-principles study. Ceramics International, 2016, 42, 5299-5303.	2.3	26
40	Electronic and optical properties of kesterite Cu2ZnSnS4 under in-plane biaxial strains: First-principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2398-2402.	0.9	25
41	Surface morphology, structural and optical properties of polar and non-polar ZnO thin films: A comparative study. Journal of Crystal Growth, 2009, 311, 4398-4401.	0.7	24
42	Self-Organized Back Surface Field to Improve the Performance of Cu ₂ ZnSn(S,Se) ₄ Solar Cells by Applying P-Type MoSe ₂ :Nb to the Back Electrode Interface. ACS Applied Materials & Interfaces, 2019, 11, 31851-31859.	4.0	24
43	Influence of oxygen/argon ratio on structural, electrical and optical properties of Ag-doped ZnO thin films. Journal of Crystal Growth, 2010, 312, 1813-1816.	0.7	23
44	Fabrication of Cu ₂ MSnS ₄ (M = Co ²⁺ , Ni ²⁺) nanocrystal thin films and their application in photodetectors. New Journal of Chemistry, 2017, 41, 685-691.	1.4	23
45	Interface-dependent rectifying TbMnO3-based heterojunctions. AIP Advances, 2011, 1, .	0.6	22
46	Surface state and optical property of sulfur passivated InP. Materials Science in Semiconductor Processing, 2014, 17, 33-37.	1.9	22
47	Alternative Spectral Photoresponse in a <i>p</i> -Cu ₂ ZnSnS ₄ / <i>n</i> -GaN Heterojunction Photodiode by Modulating Applied Voltage. ACS Applied Materials & Interfaces, 2015, 7, 16653-16658.	4.0	22
48	Band offsets of Ag2ZnSnSe4/CdS heterojunction: An experimental and first-principles study. Journal of Applied Physics, 2017, 121, .	1.1	22
49	Synthesis and characterizations of Cu2MgSnS4 thin films with different sulfuration temperatures. Materials Letters, 2019, 242, 58-61.	1.3	22
50	Mechanism of enhanced power conversion efficiency of Cu2ZnSn(S, Se)4 solar cell by cadmium surface diffusion doping. Journal of Alloys and Compounds, 2021, 876, 160160.	2.8	22
51	A versatile strategy for fabricating various Cu ₂ ZnSnS ₄ precursor solutions. Journal of Materials Chemistry C, 2017, 5, 3035-3041.	2.7	20
52	Influencing mechanism of cationic ratios on efficiency of Cu2ZnSn(S,Se)4 solar cells fabricated with DMF-based solution approach. Solar Energy Materials and Solar Cells, 2019, 195, 55-62.	3.0	20
53	p-Type MgZnO thin films grown using N delta-doping by plasma-assisted molecular beam epitaxy. Journal of Alloys and Compounds, 2010, 504, 484-487.	2.8	19
54	Modulation of Field-Effect Passivation at the Back Electrode Interface Enabling Efficient Kesterite-Type Cu ₂ ZnSn(S,Se) ₄ Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 38163-38174.	4.0	18

#	Article	IF	CITATIONS
55	Influence of WSe2 buffer layer at back electrode on performance of Cu2ZnSn(S,Se)4 solar cells. Solar Energy, 2020, 199, 128-135.	2.9	18
56	Structure, optical and electrical properties of (Cu1-xAgx)2ZnSn(S,Se)4 alloy thin films for photovoltaic application. Materials Science in Semiconductor Processing, 2018, 81, 54-59.	1.9	17
57	Photoinduced phase transition and relaxation in bare SrTiO3 single crystals. Journal of Applied Physics, 2013, 114, .	1.1	16
58	Mechanism of effect of intrinsic defects on electrical and optical properties of Cu ₂ CdSnS ₄ : an experimental and first-principles study. Journal Physics D: Applied Physics, 2015, 48, 445105.	1.3	16
59	Fabrication, characterization and application of Cu2ZnSn(S,Se)4 absorber layer via a hybrid ink containing ball milled powders. Journal of Alloys and Compounds, 2015, 643, 152-158.	2.8	16
60	Significantly enhancing back contact adhesion and improving stability of Cu2(Zn,Cd)Sn(S,Se)4 solar cell by a rational carbon doping strategy. Journal of Alloys and Compounds, 2017, 710, 403-408.	2.8	16
61	A self-powered high performance UV-Vis-NIR broadband photodetector based on β-Bi ₂ O ₃ nanoparticles through defect engineering. Journal of Materials Chemistry C, 2022, 10, 8364-8372.	2.7	16
62	Surface State Passivation and Optical Properties Investigation of GaSb via Nitrogen Plasma Treatment. ACS Omega, 2018, 3, 4412-4417.	1.6	15
63	Structural, electrical, and optical properties of Ag2ZnSnSe4 for photodetection application. Journal of Applied Physics, 2019, 125, .	1.1	15
64	Synthesis and characterization of WB2-WB3-B4C hard composites. International Journal of Refractory Metals and Hard Materials, 2019, 82, 268-272.	1.7	15
65	Effects of S on solid solubility of Ag and electrical properties of Ag-doped ZnO films grown by radio frequency magnetron sputtering. Journal of Alloys and Compounds, 2013, 550, 479-482.	2.8	14
66	Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires. Nanophotonics, 2017, 6, 1093-1100.	2.9	14
67	Effect of Cd content and sulfurization on structures and properties of Cd doped Cu2SnS3 thin films. Journal of Alloys and Compounds, 2017, 721, 92-99.	2.8	14
68	Structure, luminescence and electrical properties of ZnO thin films annealed in H2 and H2O ambient: A comparative study. Thin Solid Films, 2010, 518, 3923-3928.	0.8	13
69	A facile route to realize ultraviolet emission in a nano-engineered SnO ₂ -based light-emitting diode. Journal Physics D: Applied Physics, 2015, 48, 465103.	1.3	13
70	Localized-State-Dependent Electroluminescence from ZnO/ZnS Core–Shell Nanowires–GaN Heterojunction. ACS Applied Nano Materials, 2018, 1, 1641-1647.	2.4	13
71	Behavior of indium alloying with Cu2ZnSn(S,Se)4 and its effect on performances of Cu2ZnSn(S,Se)4-based solar cell. Journal of Alloys and Compounds, 2018, 767, 439-447.	2.8	13
72	Synthesis and characterization of noble metal borides: RuB (x> 1). Materials Research Bulletin, 2016, 74, 188-191.	2.7	12

#	Article	IF	CITATIONS
73	Influence of hydrostatic pressure on the native point defects in wurtzite ZnO: Ab initio calculation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5077-5082.	0.9	11
74	Conversion mechanism of conductivity of phosphorus-doped ZnO films induced by post-annealing. Journal of Applied Physics, 2013, 113, 193105.	1.1	11
75	Influence of Ag–S codoping on silver chemical states and stable p-type conduction behavior of the ZnO films. Ceramics International, 2014, 40, 2161-2167.	2.3	11
76	Visible-blind ultraviolet photodetector based on p-Cu2CdSnS4/n-ZnS heterojunction with a type-I band alignment. Journal of Applied Physics, 2016, 120, .	1.1	11
77	Effects of etching on surface structure of Cu2ZnSn(S,Se)4 absorber and performance of solar cell. Solar Energy, 2018, 173, 696-701.	2.9	11
78	Efficiency enhancement of Cu2ZnSn(S, Se)4 solar cells by addition a CuSe intermediate layer between Cu2ZnSn(S, Se)4 and Mo electrode. Journal of Alloys and Compounds, 2022, 911, 165056.	2.8	11
70	Improvement of the photovoltaic performance of Cu ₂ ZnSn(S _{<i>x</i>) Tj ETQq1 1 0.78431}	4 rgBT /Ov	erlock 10 Tf 5
79	solution. Journal Physics D: Applied Physics, 2018, 51, 105103.	1.ð	10
80	Experimental and first-principles study of photoluminescent and optical properties of Na-doped CuAlO ₂ : the role of the Na _{Al} -2Na _{<i>i</i>} complex. Journal Physics D: Applied Physics, 2015, 48, 335102.	1.3	9
81	Determination of band offset in MgO/InP heterostructure by X-ray photoelectron spectroscopy. Vacuum, 2016, 134, 136-140.	1.6	9
82	Surface Periodic Nanostructure of <1>p 1 -GaSb Irradiated by Femtosecond Laser and Optical Properties Research. Nanoscience and Nanotechnology Letters, 2015, 7, 1-5.	0.4	9
83	Synthesis of Antimony Nanotubes via Facile Template-Free Solvothermal Reactions. Nanoscale Research Letters, 2016, 11, 486.	3.1	8
84	Role of nitrogen-related complex in stabilizing ferromagnetic ordering in a rare-earth and nitrogen codoped ZnO. Ceramics International, 2017, 43, 6013-6018.	2.3	8
85	Hole-mediated ferromagnetic enhancement and stability in Cu-doped ZnOS alloy thin films. Journal Physics D: Applied Physics, 2012, 45, 075002.	1.3	7
86	Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires. Journal of Applied Physics, 2013, 114, .	1.1	7
87	Effects of magnesium on phosphorus chemical states and <i>p</i> -type conduction behavior of phosphorus-doped ZnO films. Journal of Chemical Physics, 2013, 138, 034704.	1.2	7
88	Effect of doping behaviors of Ag and S on the formation of p-type Ag–S co-doped ZnO film by a modified hydrothermal method. Thin Solid Films, 2016, 600, 13-18.	0.8	7
89	Modification of back electrode with WO3 layer and its effect on Cu2ZnSn(S,Se)4-based solar cells. Superlattices and Microstructures, 2018, 113, 328-336.	1.4	7
90	Ultraviolet electroluminescence from nanostructural SnO2-based heterojunction with high-pressure synthesized Li-doped ZnO as a hole source. Ceramics International, 2019, 45, 4392-4397.	2.3	7

#	Article	IF	CITATIONS
91	N–SrTiO3/p-GaN heterojunctions: A white light-emitting diode with a broad luminescence spectrum. Materials Science in Semiconductor Processing, 2021, 126, 105659.	1.9	7
92	Doping Behavior of Zn in CdS and Its Effect on the Power Conversion Efficiency of the Cu ₂ ZnSn(S, Se) ₄ Solar Cell. Journal of Physical Chemistry C, 2021, 125, 27449-27457.	1.5	7
93	Structural, electronic and optical properties of Cd x Zn 1â^'x S alloys from first-principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 3382-3388.	0.9	6
94	Recovering near-band-edge ultraviolet responses in a wide-bandgap oxide with dipole-forbidden bandgap transition. Journal of Alloys and Compounds, 2015, 649, 625-629.	2.8	6
95	Impact of sequential annealing step on the performance of Cu2ZnSn(S,Se)4 thin film solar cells. Superlattices and Microstructures, 2016, 95, 149-158.	1.4	6
96	Enhanced efficiency of Cu ₂ ZnSn(S,Se) ₄ solar cells <i>via</i> anti-reflectance properties and surface passivation by atomic layer deposited aluminum oxide. RSC Advances, 2018, 8, 19213-19219.	1.7	6
97	Single Exposure to Cocaine Impairs Reinforcement Learning by Potentiating the Activity of Neurons in the Direct Striatal Pathway in Mice. Neuroscience Bulletin, 2021, 37, 1119-1134.	1.5	6
98	High pressure synthesis and characterization of noble metal nitride IrNx. Materials Letters, 2013, 107, 382-385.	1.3	5
99	Highly spectrum-selective near-band-edge ultraviolet photodiode based on indium oxide with dipole-forbidden bandgap transition. Ceramics International, 2016, 42, 8017-8021.	2.3	5
100	Giant enhancement of ultraviolet near-band-edge emission from a wide-bandgap oxide with dipole-forbidden bandgap transition. Journal of Alloys and Compounds, 2017, 705, 492-496.	2.8	5
101	Improvement of the photovoltaic performance of Ag-alloyed Cu2ZnSn(S,Se)4-based solar cells by optimizing the selenization temperature. Superlattices and Microstructures, 2019, 125, 287-294.	1.4	5
102	Tuning optical and electrical properties of TixSn1â^'xO2 alloy thin films with dipole-forbidden transition via band gap and defect engineering. Journal of Alloys and Compounds, 2021, 885, 160974.	2.8	5
103	Influence mechanism of Cu+/(Cu++Cu2+) ratio in Cu-Zn-Sn-S precursor solution on performance of Cu2ZnSn(S,Se)4 solar cells. Solar Energy, 2022, 231, 775-783.	2.9	5
104	Oxygen partial pressure dependence of the properties of MgZnO thin films during annealing. Journal of Materials Science, 2010, 45, 6206-6211.	1.7	4
105	Cation impurity-defect complex induced ferromagnetism and hopping conduction in Sb-doped ZnO synthesized under high pressure. Journal of Alloys and Compounds, 2020, 823, 153713.	2.8	4
106	Preparation and characterization of Ag2ZnSn(S,Se)4 and its application in improvement of power conversion efficiency of Cu2ZnSn(S,Se)4-based solar cells. Ceramics International, 2021, 47, 34473-34480.	2.3	4
107	Role of zinc tin oxide passivation layer at back electrode interface in improving efficiency of Cu2ZnSn(S,Se)4 solar cells. Superlattices and Microstructures, 2022, 163, 107133.	1.4	4
108	Improvement of Photovoltaic Performance of Cu ₂ ZnSn(S,Se) ₄ Solar Cells by Modification of Back Electrode Interface with Amorphous Boron Nitride. Advanced Materials Interfaces, 2022, 9, .	1.9	4

#	Article	IF	CITATIONS
109	Nanomaterials for Energy-Efficient Applications. Journal of Nanomaterials, 2015, 2015, 1-2.	1.5	3
110	Surface sulfurization of ZnO/ZnS core shell nanowires and shell layers dependent optical properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 7924-7929.	1.1	3
111	Chemical State, Site, Solid Solubility, and Magnetism of Fe in the Ferropericlase (Mg1–x Fe x)O Produced by Ball Milling of MgO and Fe. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4551-4557.	1.1	2
112	Band alignment at a MgO/GaSb heterointerface using x-ray photoelectron spectroscopy measurements. Materials Research Express, 2016, 3, 076402.	0.8	2
113	First-principles investigations on extrinsic acceptor defects in alkaline-earth metal and N doped CuAlO2. Physica B: Condensed Matter, 2018, 547, 38-47.	1.3	2
114	Shallow Donor Ionization Energy in Sn-Doped ZnO Nanobelts. Nanoscience and Nanotechnology Letters, 2014, 6, 887-891.	0.4	2
115	Photoluminescence Properties of the GaSb Nanostructures Irradiated by Femtosecond Laser. Nanoscience and Nanotechnology Letters, 2015, 7, 117-120.	0.4	1
116	Effect of Al Diffusion on Electrical and Photoluminescent Properties of Mg _x Zn _{1–<i>x</i>} O Alloy Films Fabricated on Sapphire Substrates. Nanoscience and Nanotechnology Letters, 2015, 7, 111-116.	0.4	1
117	The effect of annealing temperature on electrical properties of Au/n-GaSb Schottky contacts. , 2012, , .		0
118	Er60Ni132: A new structure from the Ni occupied the 4b sites in cubic laves superstructure synthesized under high pressure and high temperature. Intermetallics, 2014, 55, 195-198.	1.8	0