Xin Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/704893/publications.pdf

Version: 2024-02-01

516215 395343 1,151 33 34 16 citations h-index g-index papers 35 35 35 1846 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Photoâ€Adjustable TiO ₂ â€Paper as a Smart Substrate for Paperâ€Based Analytical Devices. Advanced Materials Interfaces, 2022, 9, .	1.9	4
2	Multidimensional surface patterning based on wavelength-controlled disulfide-diselenide dynamic photochemistry. Materials Today, 2022, 57, 57-65.	8.3	3
3	Disulfideâ€"yne reaction: controlling the reactivity of a surface by light. RSC Advances, 2021, 11, 21023-21028.	1.7	1
4	Polydopamine–Ag composite surface guides HBMSCs adhesion and proliferation. Biomedical Materials (Bristol), 2021, 16, 025003.	1.7	0
5	Static–Dynamic Fluorescence Patterns Based on Photodynamic Disulfide Reactions for Versatile Information Storage. Small, 2021, 17, e2102224.	5.2	12
6	Facile Surface Functionalization Strategy for Twoâ€Photon Lithography Microstructures. Small, 2021, 17, e2101048.	5.2	6
7	Wide-Gamut Biomimetic Structural Colors from Interference-Assisted Two-Photon Polymerization. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60648-60659.	4.0	9
8	Vertical Flow Assays: Vertical Flow Assay for Inflammatory Biomarkers Based on Nanofluidic Channel Array and SERS Nanotags (Small 32/2020). Small, 2020, 16, 2070180.	5.2	7
9	Reconfigurable Surface with Photodefinable Physicochemical Properties for User-Designable Cell Scaffolds. ACS Applied Bio Materials, 2020, 3, 2230-2238.	2.3	1
10	Vertical Flow Assay for Inflammatory Biomarkers Based on Nanofluidic Channel Array and SERS Nanotags. Small, 2020, 16, e2002801.	5.2	38
11	Photo-responsive photonic hydrogel: <i>in situ</i> manipulation and monitoring of cell scaffold stiffness. Materials Horizons, 2020, 7, 2944-2950.	6.4	28
12	Polydopamine: UVâ€Triggered Polydopamine Secondary Modification: Fast Deposition and Removal of Metal Nanoparticles (Adv. Funct. Mater. 34/2019). Advanced Functional Materials, 2019, 29, 1970233.	7.8	0
13	Programmable Liquid Adhesion on Bioâ€Inspired Reâ€Entrant Structures. Small, 2019, 15, e1902360.	5. 2	31
14	UVâ€Triggered Polydopamine Secondary Modification: Fast Deposition and Removal of Metal Nanoparticles. Advanced Functional Materials, 2019, 29, 1901875.	7.8	40
15	Fast Strategy to Functional Paper Surfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14445-14456.	4.0	23
16	3D Printing of Bioinspired Liquid Superrepellent Structures. Advanced Materials, 2018, 30, e1800103.	11.1	135
17	Single-Step Fabrication of High-Throughput Surface-Enhanced Raman Scattering Substrates. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4222-4232.	4.0	8
18	Clickable Colloidal Photonic Crystals for Structural Color Pattern. Langmuir, 2018, 34, 13219-13224.	1.6	20

#	Article	IF	CITATIONS
19	Generating Microdroplet Array on Photonic Pseudo-paper for Absolute Quantification of Nucleic Acids. ACS Applied Materials & amp; Interfaces, 2018, 10, 39144-39150.	4.0	34
20	Liquid Superrepellents: 3D Printing of Bioinspired Liquid Superrepellent Structures (Adv. Mater.) Tj ETQq0 0 0 rgE	3T /Oyerlo	ck 10 Tf 50 7
21	Reparable Superhydrophobic Surface with Hidden Reactivity, Its Photofunctionalization and Photopatterning. Advanced Functional Materials, 2018, 28, 1803765.	7.8	31
22	Bio-inspired strategy for controlled dopamine polymerization in basic solutions. Polymer Chemistry, 2017, 8, 2145-2151.	1.9	44
23	Singleâ€Step Fabrication of Highâ€Density Microdroplet Arrays of Lowâ€Surfaceâ€Tension Liquids. Advanced Materials, 2016, 28, 3202-3208.	11.1	93
24	Reversible and Rewritable Surface Functionalization and Patterning via Photodynamic Disulfide Exchange. Advanced Materials, 2015, 27, 4997-5001.	11.1	69
25	Reactive Superhydrophobic Surface and Its Photoinduced Disulfide-ene and Thiol-ene (Bio)functionalization. Nano Letters, 2015, 15, 675-681.	4.5	86
26	UVâ€Triggered Dopamine Polymerization: Control of Polymerization, Surface Coating, and Photopatterning. Advanced Materials, 2014, 26, 8029-8033.	11.1	307
27	Direct UVâ€Induced Functionalization of Surface Hydroxy Groups by Thiol–Ol Chemistry. Angewandte Chemie - International Edition, 2014, 53, 3835-3839.	7.2	29
28	Porous poly(2-octyl cyanoacrylate): a facile one-step preparation of superhydrophobic coatings on different substrates. Journal of Materials Chemistry A, 2013, 1, 1026-1029.	5.2	30
29	Macro reversible addition–fragmentation chain transfer agent mixture as a means to enhance the electroâ€optical performance of polymerâ€dispersed liquid crystals. Polymer International, 2011, 60, 971-975.	1.6	5
30	The improvement of electroâ€optical properties of polymerâ€dispersed liquid crystals using copolymer macroinitiator with different glass transition temperature. Journal of Polymer Science Part A, 2010, 48, 5557-5561.	2.5	8
31	Influence of matrix glass transition temperature on the memory effect of polymerâ€dispersed liquid crystals. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 729-732.	2.4	13
32	Effect of molecular weight of macroâ€iniferter on electroâ€optical properties of polymer dispersed liquid crystal films prepared by iniferter polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1530-1534.	2.4	7
33	The effect of the resultant microphase-separated structures of polymer matrices on the electro-optical properties of polymer dispersed liquid crystal films by Iniferter polymerization. European Polymer Journal, 2009, 45, 1936-1940.	2.6	8
34	Control of liquid crystal droplet configuration in polymer dispersed liquid crystal with macro-iniferter polystyrene. Liquid Crystals, 2009, 36, 933-938.	0.9	9