

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7048527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of a Bicyclic Peptidyl Pan-Ras Inhibitor. Journal of Medicinal Chemistry, 2021, 64, 13038-13053.	6.4	15
2	Targeting Ras with Macromolecules. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031476.	6.2	13
3	Bicyclic Peptides as Nextâ€Generation Therapeutics. Chemistry - A European Journal, 2017, 23, 12690-12703.	3.3	109
4	Macrocycles as protein–protein interaction inhibitors. Biochemical Journal, 2017, 474, 1109-1125.	3.7	133
5	Discovery of a Direct Ras Inhibitor by Screening a Combinatorial Library of Cell-Permeable Bicyclic Peptides. ACS Combinatorial Science, 2016, 18, 75-85.	3.8	103
6	Inhibition of Ras Signaling by Blocking Ras–Effector Interactions with Cyclic Peptides. Angewandte Chemie - International Edition, 2015, 54, 7602-7606.	13.8	132
7	Direct Ras inhibitors identified from a structurally rigidified bicyclic peptide library. Tetrahedron, 2014, 70, 7714-7720.	1.9	31
8	Screening Bicyclic Peptide Libraries for Protein–Protein Interaction Inhibitors: Discovery of a Tumor Necrosis Factor-α Antagonist. Journal of the American Chemical Society, 2013, 135, 11990-11995.	13.7	121
9	Efficient Delivery of Cyclic Peptides into Mammalian Cells with Short Sequence Motifs. ACS Chemical Biology, 2013, 8, 423-431.	3.4	160
10	Inhibition of Ras–effector interactions by cyclic peptides. MedChemComm, 2013, 4, 378-382.	3.4	53
11	High-Throughput Screening of One-Bead-One-Compound Libraries: Identification of Cyclic Peptidyl Inhibitors against Calcineurin/NFAT Interaction. ACS Combinatorial Science, 2011, 13, 537-546.	3.8	63
12	High-Throughput Sequence Determination of Cyclic Peptide Library Members by Partial Edman Degradation/Mass Spectrometry. Journal of the American Chemical Society, 2006, 128, 13000-13009.	13.7	106
13	Traceless Capping Agent for Peptide Sequencing by Partial Edman Degradation and Mass Spectrometry. Analytical Chemistry, 2006, 78, 5935-5939.	6.5	67
14	Decoding Proteinâ^'Protein Interactions through Combinatorial Chemistry:  Sequence Specificity of SHP-1, SHP-2, and SHIP SH2 Domains. Biochemistry, 2005, 44, 14932-14947.	2.5	125
15	Peptidyl hydroxamic acids as methionine aminopeptidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 77-79.	2.2	34
16	Peptidyl aldehydes as slow-binding inhibitors of dual-specificity phosphatases. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 685-687.	2.2	12
17	α-Bromoacetophenone derivatives as neutral protein tyrosine phosphatase inhibitors: structure–Activity relationship. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3047-3050.	2.2	37
18	Activation of antibacterial prodrugs by peptide deformylase. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1073-1076.	2.2	21