Li-Ru Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7048391/publications.pdf

Version: 2024-02-01

430442 395343 1,294 41 18 33 h-index citations g-index papers 43 43 43 1760 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Traumatic Brain Injury. Cell Transplantation, 2017, 26, 1118-1130.	1.2	350
2	Hematopoietic growth factors pass through the blood–brain barrier in intact rats. Experimental Neurology, 2007, 204, 569-573.	2.0	101
3	Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Progress in Neurobiology, 2018, 163-164, 5-26.	2.8	85
4	Brain Repair by Hematopoietic Growth Factors in a Rat Model of Stroke. Stroke, 2007, 38, 2584-2591.	1.0	83
5	Beneficial Effects of Hematopoietic Growth Factor Therapy in Chronic Ischemic Stroke in Rats. Stroke, 2007, 38, 2804-2811.	1.0	75
6	Long-term protective effects of AAV9-mesencephalic astrocyte-derived neurotrophic factor gene transfer in parkinsonian rats. Experimental Neurology, 2017, 291, 120-133.	2.0	51
7	Brain self-protection: The role of endogenous neural progenitor cells in adult brain after cerebral cortical ischemia. Brain Research, 2010, 1327, 91-102.	1.1	50
8	The Role of Stem Cell Factor and Granulocyte-Colony Stimulating Factor in Brain Repair during Chronic Stroke. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 759-770.	2.4	42
9	NF-κB is involved in brain repair by stem cell factor and granulocyte-colony stimulating factor in chronic stroke. Experimental Neurology, 2015, 263, 17-27.	2.0	42
10	Ultrastructural Changes in Cerebral Capillary Pericytes in Aged Notch3 Mutant Transgenic Mice. Ultrastructural Pathology, 2012, 36, 48-55.	0.4	38
11	The Effects of Hematopoietic Growth Factors on Neurite Outgrowth. PLoS ONE, 2013, 8, e75562.	1.1	36
12	Reestablishing Neuronal Networks in the Aged Brain by Stem Cell Factor and Granulocyte-Colony Stimulating Factor in a Mouse Model of Chronic Stroke. PLoS ONE, 2013, 8, e64684.	1,1	32
13	Stem cell factor and granulocyte colony-stimulating factor exhibit therapeutic effects in a mouse model of CADASIL. Neurobiology of Disease, 2015, 73, 189-203.	2.1	29
14	Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury. Journal of Neurosurgery, 2018, 129, 1286-1294.	0.9	26
15	Intrastriatal GDNF gene transfer by inducible lentivirus vectors protects dopaminergic neurons in a rat model of parkinsonism. Experimental Neurology, 2014, 261, 87-96.	2.0	25
16	Stem cell factor and granulocyte colony-stimulating factor reduce \hat{l}^2 -amyloid deposits in the brains of APP/PS1 transgenic mice. Alzheimer's Research and Therapy, 2011, 3, 8.	3.0	22
17	Repairing the Brain by SCF+G-CSF Treatment at 6 Months Postexperimental Stroke. ASN Neuro, 2016, 8, 175909141665501.	1.5	21
18	Stem cell factor and granulocyte colony-stimulating factor promote neuronal lineage commitment of neural stem cells. Differentiation, 2012, 83, 17-25.	1.0	20

#	Article	IF	Citations
19	Turning Death to Growth: Hematopoietic Growth Factors Promote Neurite Outgrowth through MEK/ERK/p53 Pathway. Molecular Neurobiology, 2018, 55, 5913-5925.	1.9	19
20	Stem cell factor and granulocyte colony-stimulating factor promote brain repair and improve cognitive function through VEGF-A in a mouse model of CADASIL. Neurobiology of Disease, 2019, 132, 104561.	2.1	19
21	Multiphoton microscope imaging: The behavior of neural progenitor cells in the rostral migratory stream. Neuroscience Letters, 2007, 425, 83-88.	1.0	15
22	The combination of stem cell factor and granulocyte-colony stimulating factor for chronic stroke treatment in aged animals. Experimental & Translational Stroke Medicine, 2012, 4, 25.	3.2	13
23	Brain-derived CCR5 Contributes to Neuroprotection and Brain Repair after Experimental Stroke. , 2021, 12, 72.		13
24	Sequential Adeno-Associated Viral Vector Serotype 9–Green Fluorescent Protein Gene Transfer Causes Massive Inflammation and Intense Immune Response in Rat Striatum. Human Gene Therapy, 2016, 27, 528-543.	1.4	11
25	Stem Cell Factor in Combination with Granulocyte Colony-Stimulating Factor reduces Cerebral Capillary Thrombosis in a Mouse Model of CADASIL. Cell Transplantation, 2018, 27, 637-647.	1.2	11
26	Fibrinogen Reduction and Motor Function Improvement by Hematopoietic Growth Factor Treatment in Chronic Stroke in Aged Mice: A Treatment Frequency Study. Cell Transplantation, 2016, 25, 729-734.	1.2	10
27	S100 Calcium-Binding Protein A9 Knockout Contributes to Neuroprotection and Functional Improvement after Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 950-965.	1.7	9
28	Reparative Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor in Aged APP/PS1 Mice. , 2020, 11, 1423.		9
29	Long-term beneficial effects of hematopoietic growth factors on brain repair in the chronic phase of severe traumatic brain injury. Experimental Neurology, 2020, 330, 113335.	2.0	9
30	Inducible Lentivirus-Mediated Expression of the <i>Oct4</i> Gene Affects Multilineage Differentiation of Adult Human Bone Marrowâ€"Derived Mesenchymal Stem Cells. Cellular Reprogramming, 2015, 17, 347-359.	0.5	8
31	The contribution of stem cell factor and granulocyte colony-stimulating factor in reducing neurodegeneration and promoting neurostructure network reorganization after traumatic brain injury. Brain Research, 2020, 1746, 147000.	1.1	5
32	Thiopental exaggerates ischemic brain damage and neurological deficits after experimental stroke in spontaneously hypertensive rats. Brain Research, 2009, 1294, 176-182.	1.1	4
33	SCF + G-CSF treatment in the chronic phase of severe TBI enhances axonal sprouting in the spinal cord and synaptic pruning in the hippocampus. Acta Neuropathologica Communications, 2021, 9, 63.	2.4	4
34	Intraventricular administration of endoneuraminidase-N facilitates ectopic migration of subventricular zone-derived neural progenitor cells into 6-OHDA lesioned striatum of mice. Experimental Neurology, 2016, 277, 139-149.	2.0	3
35	Novel pathological features and potential therapeutic approaches for CADASIL: insights obtained from a mouse model of CADASIL. Therapeutic Targets for Neurological Diseases, 2014, 1, .	2.2	3
36	Stem Cell Factor in Combination With Granulocyte Colony-Stimulating Factor Protects the Brain From Capillary Thrombosis-Induced Ischemic Neuron Loss in a Mouse Model of CADASIL. Frontiers in Cell and Developmental Biology, 2020, 8, 627733.	1.8	1

#	Article	IF	CITATIONS
37	[P4–590]: THE THERAPEUTIC EFFECTS OF HEMATOPOIETIC GROWTH FACTORS IN A MOUSE MODEL OF CEREBRAL AMYLOIDOSIS. Alzheimer's and Dementia, 2017, 13, P1580.	0.4	O
38	Current Understanding of Pathology and Therapeutic Status for CADASIL. Springer Series in Translational Stroke Research, 2018, , 193-203.	0.1	0
39	Bone Marrow Stem Cell-Stimulating Factors and Brain Recovery After Stroke. , 2017, , 289-310.		0
40	The Combination of Stem Cell Factor (SCF) and Granulocyte-Colony Stimulating Factor (G-CSF) in Repairing the Brain Post-acute Stroke. Springer Series in Translational Stroke Research, 2018, , 197-215.	0.1	0
41	Recent Advances in CADASIL Research. , 2018, , 169-190.		0