List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7048266/publications.pdf Version: 2024-02-01

EMILE A OKAL

#	Article	IF	CITATIONS
1	The <i>M</i> w = 6.6 earthquake and tsunami of south Crete on 2020 May 2. Geophysical Journal International, 2022, 230, 480-506.	1.0	6
2	On the possibility of seismic recording of meteotsunamis. Natural Hazards, 2021, 106, 1125-1147.	1.6	7
3	T Waves. Encyclopedia of Earth Sciences Series, 2021, , 1751-1753.	0.1	0
4	Snell's Law Applied to Tsunamis: Simulations and Observations. Pure and Applied Geophysics, 2021, 178, 4969-4983.	0.8	1
5	Frequency-size distributions of Wadati-Benioff zone and near-boundary intraplate earthquakes: Implications for intermediate and deep seismicity. Physics of the Earth and Planetary Interiors, 2021, , 106707.	0.7	1
6	The Energy of a Tsunami Generated by Dynamic Uplift of the Ocean Bottom. I. Analytical Solutions. Pure and Applied Geophysics, 2021, 178, 4985-4999.	0.8	2
7	Introduction to "Sixty Years of Modern Tsunami Science, Volume 1: Lessons and Progress― Pure and Applied Geophysics, 2021, 178, 4689-4695.	0.8	2
8	Tsunami simulations along the Eastern African coast from mega-earthquake sources in the Indian Ocean. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	4
9	The body-wave magnitude mb: an attempt to rationalize the distance-depth correction q(Δ, h). Geophysical Journal International, 2020, 223, 270-288.	1.0	2
10	GRACE gravitational measurements of tsunamis after the 2004, 2010, and 2011 great earthquakes. Journal of Geodesy, 2020, 94, 1.	1.6	17
11	Effects of bathymetry complexity on tsunami propagation: a spherical harmonics approach. Geophysical Journal International, 2020, 223, 632-647.	1.0	7
12	Preliminary Results from a Prototype Ocean-Bottom Pressure Sensor Deployed in the Mentawai Channel, Central Sumatra, Indonesia. Pure and Applied Geophysics, 2020, 177, 5119-5131.	0.8	0
13	Rescuing Legacy Seismic Data FAIR'ly. Seismological Research Letters, 2020, 91, 1339-1340.	0.8	9
14	Evidence of prehistoric liquefaction in Kuwait and implications for the seismic vulnerability of the Arabian Gulf Countries. Natural Hazards, 2020, 103, 799-813.	1.6	1
15	Introduction to "Twenty Five Years of Modern Tsunami Science Following the 1992 Nicaragua and Flores Island Tsunamis, Volume Il― Pure and Applied Geophysics, 2020, 177, 1183-1191.	0.8	2
16	The Chios, Greece Earthquake of 23 July 1949: Seismological Reassessment and Tsunami Investigations. Pure and Applied Geophysics, 2020, 177, 1295-1313.	0.8	8
17	Temporal and Topographic Source Effects on Tsunami Generation. Journal of Geophysical Research: Oceans, 2019, 124, 5270-5288.	1.0	8
18	Introduction to "Twenty Five Years of Modern Tsunami Science Following the 1992 Nicaragua and Flores Island Tsunamis, Volume I― Pure and Applied Geophysics, 2019, 176, 2757-2769.	0.8	4

#	Article	IF	CITATIONS
19	Gravitational Changes of the Earth's Free Oscillation From Earthquakes: Theory and Feasibility Study Using GRACE Interâ€satellite Tracking. Journal of Geophysical Research: Solid Earth, 2019, 124, 7483-7503.	1.4	7
20	Twenty-Five Years of Progress in the Science of "Geological―Tsunamis Following the 1992 Nicaragua and Flores Events. Pure and Applied Geophysics, 2019, 176, 2771-2793.	0.8	10
21	The Pucallpa Nest and its constraints on the geometry of the Peruvian Flat Slab. Tectonophysics, 2019, 762, 97-108.	0.9	7
22	Reassessment of the 1907 Sumatra "Tsunami Earthquake―Based on Macroseismic, Seismological, and Tsunami Observations, and Modeling. Pure and Applied Geophysics, 2019, 176, 2831-2868.	0.8	19
23	Numerical Modeling of the June 17, 2017 Landslide and Tsunami Events in Karrat Fjord, West Greenland. Pure and Applied Geophysics, 2019, 176, 3035-3057.	0.8	29
24	The Large Andaman Islands Earthquake of 26 June 1941: Why No Significant Tsunami?. Pure and Applied Geophysics, 2019, 176, 2869-2886.	0.8	3
25	Diurnal seismicity cycle linked to subsurface melting on an ice shelf. Annals of Glaciology, 2019, 60, 137-157.	2.8	19
26	Energy and Magnitude: A Historical Perspective. Pure and Applied Geophysics, 2019, 176, 3815-3849.	0.8	11
27	An implosive component to the source of the deep Sea of Okhotsk earthquake of 24 May 2013: Evidence from radial modes and CMT inversion. Physics of the Earth and Planetary Interiors, 2018, 281, 68-78.	0.7	4
28	Extension of the energy-to-moment parameter Î [~] to intermediate and deep earthquakes. Physics of the Earth and Planetary Interiors, 2018, 274, 37-48.	0.7	11
29	The "Tsunami Earthquake―of 13 April 1923 in Northern Kamchatka: Seismological and Hydrodynamic Investigations. Pure and Applied Geophysics, 2018, 175, 1257-1285.	0.8	3
30	The intriguing tsunami of 19 March 2017 at Bandar Dayyer, Iran: field survey and simulations. Natural Hazards, 2018, 90, 1277-1307.	1.6	22
31	Historical tsunami earthquakes in the Southwest Pacific: an extension to Δ >Â80° of the energy-to-moment parameter Î [~] . Geophysical Journal International, 2017, 210, 852-873.	1.0	9
32	A new source discriminant based on frequency dispersion for hydroacoustic phases recorded by <i>T</i> -phase stations. Geophysical Journal International, 2016, 206, 1784-1794.	1.0	7
33	The Showa Sanriku earthquake of 1933 March 2: a global seismological reassessment. Geophysical Journal International, 2016, 206, 1492-1514.	1.0	18
34	Sequencing of tsunami waves: why the first wave is not always the largest. Geophysical Journal International, 2016, 204, 719-735.	1.0	27
35	Historical seismograms: Preserving an endangered species. GeoResJ, 2015, 6, 53-64.	1.4	11
36	Field survey and modelling of the Caspian Sea tsunami of 1990 June 20. Geophysical Journal International, 2015, 201, 621-639.	1.0	13

#	Article	IF	CITATIONS
37	The quest for wisdom: lessons from 17 tsunamis, 2004–2014. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140370.	1.6	39
38	Field Survey of the 1945 Makran and 2004 Indian Ocean Tsunamis in Baluchistan, Iran. Pure and Applied Geophysics, 2015, 172, 3343-3356.	0.8	16
39	From earthquake size to far-field tsunami amplitude: development of a simple formula and application to DART buoy data. Geophysical Journal International, 2014, 196, 340-356.	1.0	11
40	The Dwarskersbos, South Africa local tsunami of August 27, 1969: field survey and simulation as a meteorological event. Natural Hazards, 2014, 74, 251-268.	1.6	24
41	Plausible megathrust tsunamis in the eastern Mediterranean Sea. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2014, 167, 99-105.	0.4	8
42	The 2010 and 2011 Tsunamis in French Polynesia: Operational Aspects and Field Surveys. Pure and Applied Geophysics, 2013, 170, 1169-1187.	0.8	21
43	Large, pre-digital earthquakes of the Bonin-Mariana subduction zone, 1930–1974. Tectonophysics, 2013, 586, 1-14.	0.9	12
44	Source parameter inversion for recent great earthquakes from a decadeâ€long observation of global gravity fields. Journal of Geophysical Research: Solid Earth, 2013, 118, 1240-1267.	1.4	87
45	From 3-Hz P Waves to 0 S 2: No Evidence of A Slow Component to the Source of the 2011 Tohoku Earthquake. Pure and Applied Geophysics, 2013, 170, 963-973.	0.8	23
46	An extension of the E/M0 tsunami earthquake discriminant Î~ to regional distances. Geophysical Journal International, 2012, 190, 1640-1656.	1.0	9
47	The south of Java earthquake of 1921 September 11: a negative search for a large interplate thrust event at the Java Trench. Geophysical Journal International, 2012, 190, 1657-1672.	1.0	25
48	Antarctic ice-shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011. Journal of Glaciology, 2011, 57, 785-788.	1.1	61
49	The †tsunami earthquake' of 1932 June 22 in Manzanillo, Mexico: seismological study and tsunami simulations. Geophysical Journal International, 2011, 187, 1443-1459.	1.0	39
50	Tsunamigenic predecessors to the 2009 Samoa earthquake. Earth-Science Reviews, 2011, 107, 128-140.	4.0	31
51	Insights on the 2009 South Pacific tsunami in Samoa and Tonga from field surveys and numerical simulations. Earth-Science Reviews, 2011, 107, 66-75.	4.0	64
52	Tsunamigenic Earthquakes: Past and Present Milestones. Pure and Applied Geophysics, 2011, 168, 969-995.	0.8	21
53	Tsunami Simulations for Regional Sources in the South China and Adjoining Seas. Pure and Applied Geophysics, 2011, 168, 1153-1173.	0.8	58
54	GPS for real-time earthquake source determination and tsunami warning systems. Journal of Geodesy, 2009. 83, 335-343.	1.6	115

#	Article	IF	CITATIONS
55	The 1956 earthquake and tsunami in Amorgos, Greece. Geophysical Journal International, 2009, 178, 1533-1554.	1.0	112
56	The tsunami of 2007 September 12, Bengkulu province, Sumatra, Indonesia: post-tsunami field survey and numerical modelling. Geophysical Journal International, 2009, 178, 180-194.	1.0	54
57	Observations of ultra-long period normal modes from the 2004 Sumatra–Andaman earthquake. Physics of the Earth and Planetary Interiors, 2009, 175, 53-62.	0.7	31
58	Seismic observations of glaciogenic ocean waves (micro-tsunamis) on icebergs and ice shelves. Journal of Glaciology, 2009, 55, 193-206.	1.1	58
59	Socotra Island, Yemen: field survey of the 2004 Indian Ocean tsunami. Natural Hazards, 2008, 46, 107-117.	1.6	15
60	Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophysical Journal International, 2008, 172, 995-1015.	1.0	157
61	The generation of T waves by earthquakes. Advances in Geophysics, 2008, , 1-65.	1.1	47
62	Far-field simulation of the 1946 Aleutian tsunami. Geophysical Journal International, 2007, 169, 1229-1238.	1.0	37
63	Quantification of Hydrophone Records of the 2004 Sumatra Tsunami. Pure and Applied Geophysics, 2007, 164, 309-323.	0.8	24
64	MTSU : Recovering Seismic Moments from Tsunameter Records. Pure and Applied Geophysics, 2007, 164, 355-378.	0.8	14
65	Seismic Records of the 2004 Sumatra and Other Tsunamis: A Quantitative Study. Pure and Applied Geophysics, 2007, 164, 325-353.	0.8	24
66	Oman Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 203-218.	1.6	85
67	Madagascar Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 263-283.	1.6	50
68	A seismological reassessment of the source of the 1946 Aleutian â€~tsunami' earthquake. Geophysical Journal International, 2006, 165, 835-849.	1.0	102
69	Hydroacoustic signals generated by parked and drifting icebergs in the Southern Indian and Pacific Oceans. Geophysical Journal International, 2006, 165, 817-834.	1.0	44
70	Rodrigues, Mauritius, and Réunion Islands Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 241-261.	1.6	37
71	A re-evaluation of the great Aleutian and Chilean earthquakes of 1906 August 17. Geophysical Journal International, 2005, 161, 268-282.	1.0	34
72	Speed and size of the Sumatra earthquake. Nature, 2005, 434, 581-582.	13.7	466

#	Article	IF	CITATIONS
73	The 2004 Sumatra earthquake and Indian Ocean tsunami: What happened and why?. Visual Geosciences, 2005, 10, 21-26.	0.5	6
74	Earth's Free Oscillations Excited by the 26 December 2004 Sumatra-Andaman Earthquake. Science, 2005, 308, 1139-1144.	6.0	231
75	The earthquake and tsunami of 1865 November 17: evidence for far-field tsunami hazard from Tonga. Geophysical Journal International, 2004, 157, 164-174.	1.0	29
76	Source discriminants for near-field tsunamis. Geophysical Journal International, 2004, 158, 899-912.	1.0	188
77	A global survey of stress orientations in subducting slabs as revealed by intermediate-depth earthquakes. Geophysical Journal International, 2004, 159, 721-733.	1.0	62
78	Comment on "Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearcâ€ , by G.J. Fryer et al. [Mar. Geol. 203 (2004) 201–218]. Marine Geology, 2004, 209, 363-369.	0.9	5
79	T Waves from the 1998 Papua New Guinea Earthquake and its Aftershocks: Timing the Tsunamigenic Slump. Pure and Applied Geophysics, 2003, 160, 1843-1863.	0.8	48
80	A Theoretical Comparison of Tsunamis from Dislocations and Landslides. Pure and Applied Geophysics, 2003, 160, 2177-2188.	0.8	86
81	Normal Mode Energetics for Far-field Tsunamis Generated by Dislocations and Landslides. Pure and Applied Geophysics, 2003, 160, 2189-2221.	0.8	47
82	The deficientTwaves of tsunami earthquakes. Geophysical Journal International, 2003, 152, 416-432.	1.0	60
83	The mechanism of great Banda Sea earthquake of 1 February 1938: applying the method of preliminary determination of focal mechanism to a historical event. Earth and Planetary Science Letters, 2003, 216, 1-15.	1.8	44
84	Strength asperities along oceanic transform faults: a model for the origin of extensional earthquakes on the Eltanin transform system. Earth and Planetary Science Letters, 2003, 216, 27-41.	1.8	7
85	T Waves from the 1998 Papua New Guinea Earthquake and its Aftershocks: Timing the Tsunamigenic Slump. , 2003, , 1843-1863.		2
86	The landslide and local tsunami of 13 September 1999 on Fatu Hiva (Marquesas Islands; French) Tj ETQq0 0 0 rg	BT/Qverlc	ock_10 Tf 50 2
87	The slump origin of the 1998 Papua New Guinea Tsunami. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458, 763-789.	1.0	305
88	Long-range detection of hydroacoustic signals from large icebergs in the Ross Sea, Antarctica. Earth and Planetary Science Letters, 2002, 203, 519-534.	1.8	44
89	Numerical modeling of the September 13, 1999 landslide and tsunami on Fatu Hiva Island (French) Tj ETQq1 1 0.	784314 r	gBT /Overloci
90	Variations in slab dip along the subducting Nazca Plate, as related to stress patterns and moment release of intermediate-depth seismicity and to surface volcanism. Geochemistry, Geophysics,	1.0	25

Geosystems, 2001, 2, n/a-n/a.

#	Article	IF	CITATIONS
91	Centroid moment tensor solutions for intermediate-depth earthquakes of the WWSSN–HGLP era (1962–1975). Physics of the Earth and Planetary Interiors, 2001, 124, 1-7.	0.7	16
92	Tsunami earthquakes: the quest for a regional signal. Physics of the Earth and Planetary Interiors, 2001, 124, 45-70.	0.7	51
93	"Detached―deep earthquakes: are they really?. Physics of the Earth and Planetary Interiors, 2001, 127, 109-143.	0.7	35
94	Preliminary determination of focal mechanisms from the inversion of spectral amplitudes of mantle waves. Physics of the Earth and Planetary Interiors, 2000, 121, 249-271.	0.7	28
95	Rayleigh–wave tomography of the Ontong–Java Plateau. Physics of the Earth and Planetary Interiors, 2000, 118, 29-51.	0.7	96
96	Seismic properties of the Eltanin Transform System, South Pacific. Physics of the Earth and Planetary Interiors, 2000, 119, 185-208.	0.7	60
97	Near-field modeling of the July 17, 1998 tsunami in Papua New Guinea. Geophysical Research Letters, 2000, 27, 3037-3040.	1.5	74
98	Tsunami detection by satellite altimetry. Journal of Geophysical Research, 1999, 104, 599-615.	3.3	46
99	On the cessation of seismicity at the base of the transition zone. Journal of Seismology, 1998, 2, 65-86.	0.6	9
100	Centroid-moment-tensor solutions for deep earthquakes predating the digital era: Discussion and inferences. Physics of the Earth and Planetary Interiors, 1998, 106, 191-218.	0.7	12
101	Centroid moment tensor solutions for deep earthquakes predating the digital era: The historical dataset (1907–1961). Physics of the Earth and Planetary Interiors, 1998, 106, 181-190.	0.7	13
102	Deep earthquakes beneath the Fiji Basin, SW Pacific: Earth's most intense deep seismicity in stagnant slabs. Physics of the Earth and Planetary Interiors, 1998, 109, 25-63.	0.7	58
103	Detection of PKJKP at intermediate periods by progressive multi-channel correlation. Earth and Planetary Science Letters, 1998, 164, 23-30.	1.8	45
104	Teleseismic estimates of radiated seismic energy: TheE/M0discriminant for tsunami earthquakes. Journal of Geophysical Research, 1998, 103, 26885-26898.	3.3	206
105	Twaves from the great 1994 Bolivian deep earthquake in relation to channeling ofSwave energy up the slab. Journal of Geophysical Research, 1997, 102, 27421-27437.	3.3	36
106	A reassessment of the deep Fiji earthquake of 26 May 1932. Tectonophysics, 1997, 275, 313-329.	0.9	4
107	Centroid moment tensor solutions for deep earthquakes predating the digital era: the World-Wide Standardized Seismograph Network dataset (1962–1976). Physics of the Earth and Planetary Interiors, 1997, 99, 121-129.	0.7	30
108	Radial modes from the great 1994 Bolivian earthquake: No evidence for an isotropic component to the source. Geophysical Research Letters, 1996, 23, 431-434.	1.5	20

#	Article	IF	CITATIONS
109	Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, 1996, 34, 261-306.	9.0	505
110	Rayleigh-Wave Dispersion Along the Hawaiian Swell: A Test of Lithospheric Thinning By Thermal Rejuvenation At A Hotspot. Geophysical Journal International, 1996, 125, 325-339.	1.0	52
111	Tâ€wave detection of underwater volcanism by landâ€based seismic stations: The example of the Hollister Ridge, Southern Pacific. Journal of the Acoustical Society of America, 1996, 100, 2640-2640.	0.5	0
112	The 1977 Three Kings Ridge earthquake (Ms = 6.7): broad-band aspect of the source rupture. Physics of the Earth and Planetary Interiors, 1995, 89, 109-125.	0.7	0
113	Frequency-moment distribution of deep earthquakes; implications for the seismogenic zone at the bottom of slabs. Physics of the Earth and Planetary Interiors, 1995, 92, 169-187.	0.7	44
114	The 9 June 94 Bolivian Deep Earthquake: An exceptional event in an extraordinary subduction zone. Geophysical Research Letters, 1995, 22, 2233-2236.	1.5	43
115	Tsunami warning: beating the waves to death and destruction. Endeavour, 1994, 18, 38-43.	0.1	3
116	The Structure of the Nazca Ridge and Sala Y Gomez Seamount Chain From the Dispersion of Rayleigh Waves. Geophysical Journal International, 1994, 117, 205-222.	1.0	47
117	The deep earthquakes of 1921–1922 in Northern Peru. Physics of the Earth and Planetary Interiors, 1994, 87, 33-54.	0.7	19
118	On the variation of b-values with earthquake size. Physics of the Earth and Planetary Interiors, 1994, 87, 55-76.	0.7	111
119	Application of the CMT algorithm to analog recordings of deep earthquakes. Physics of the Earth and Planetary Interiors, 1994, 83, 283-297.	0.7	16
120	Four years of automated measurements of seismic moments at Papeete using the mantle magnitude Mm: 1987–1991. Tectonophysics, 1993, 217, 175-193.	0.9	15
121	A Student's Guide to Teleseismic Body Wave Amplitudes. Seismological Research Letters, 1992, 63, 169-180.	0.8	33
122	One-station estimates of seismic moments from the mantle magnitudeM m: The case of the regional field (1.52???152). Pure and Applied Geophysics, 1992, 138, 43-60.	0.8	13
123	On the orientation of the horizontal seismometers at South Pole. Pure and Applied Geophysics, 1992, 138, 151-154.	0.8	1
124	Use of the mantle magnitudeM m for the reassessment of the moment of historical earthquakes. Pure and Applied Geophysics, 1992, 139, 17-57.	0.8	85
125	Historical seismicity of the southeastern Caribbean and tectonic implications. Pure and Applied Geophysics, 1992, 139, 87-120.	0.8	34
126	Twoâ€station measurements of Rayleigh wave group velocity along the Hawai'ian Swell. Geophysical Research Letters, 1991, 18, 105-108.	1.5	57

#	Article	IF	CITATIONS
127	Single-station estimates of the seismic moment of the 1960 Chilean and 1964 Alaskan earthquakes, using the mantle magnitudeM m. Pure and Applied Geophysics, 1991, 136, 103-126.	0.8	28
128	Intraplate seismicity of the Pacific Basin, 1913?1988. Pure and Applied Geophysics, 1991, 135, 261-359.	0.8	89
129	Q measurements for PhaseX overtones. Pure and Applied Geophysics, 1990, 132, 331-362.	0.8	21
130	M m: A variable-period mantle magnitude for intermediate and deep earthquakes. Pure and Applied Geophysics, 1990, 134, 333-354.	0.8	14
131	M m: Extension to Love waves of the concept of a variable-period mantle magnitude. Pure and Applied Geophysics, 1990, 134, 355-384.	0.8	29
132	Single forces and double-couples: A theoretical review of their relative efficiency for the excitation of seismic and tsunami waves Journal of Physics of the Earth, 1990, 38, 445-474.	1.4	26
133	Regional analysis of Dâ€3 velocities from the ray parameters of diffracted <i>P</i> profiles. Geophysical Research Letters, 1989, 16, 1417-1420.	1.5	34
134	<i>M_m</i> : A variableâ€period mantle magnitude. Journal of Geophysical Research, 1989, 94, 4169-4193.	3.3	115
135	A theoretical discussion of time domain magnitudes: The Prague formula for <i>M_s</i> and the mantle magnitude <i>M_m</i> . Journal of Geophysical Research, 1989, 94, 4194-4204.	3.3	40
136	An algorithm for automated tsunami warning in French Polynesia based on mantle magnitudes. Bulletin of the Seismological Society of America, 1989, 79, 1177-1193.	1.1	36
137	Seismic parameters controlling far-field tsunami amplitudes: A review. Natural Hazards, 1988, 1, 67-96.	1.6	217
138	The 1942 Southwest Indian Ocean Ridge Earthquake: Largest ever recorded on an oceanic transform. Geophysical Research Letters, 1987, 14, 147-150.	1.5	39
139	Effect of variable bathymetry on the amplitude of teleseismic tsunamis: A rayâ€ŧracing experiment. Geophysical Research Letters, 1987, 14, 765-768.	1.5	35
140	M _m : Theory of a variableâ€period mantle magnitude. Geophysical Research Letters, 1987, 14, 836-839.	1.5	18
141	M _m : Use of a variableâ€period mantle magnitude for the rapid oneâ€station estimation of teleseismic moments. Geophysical Research Letters, 1987, 14, 840-843.	1.5	27
142	Tensional intraplate seismicity in the Eastcentral Pacific. Physics of the Earth and Planetary Interiors, 1987, 49, 264-282.	0.7	10
143	Stacking investigations of the dispersion of higher order mantle Rayleigh waves and normal modes. Physics of the Earth and Planetary Interiors, 1987, 47, 188-204.	0.7	10
144	The depth of the deepest historical earthquakes. Pure and Applied Geophysics, 1987, 125, 699-715.	0.8	32

#	Article	IF	CITATIONS
145	Seismic detection of underwater volcanism: The example of French Polynesia. Pure and Applied Geophysics, 1987, 125, 919-950.	0.8	64
146	<i>Inside the Earth, Evidence from Earthquakes</i> . Bruce A. Bolt. Journal of Geology, 1987, 95, 588-588.	0.7	0
147	Intraplate deformation in the Samoa-Gilbert-Ralik area: A prelude to a change of plate boundaries in the Southwest Pacific?. Tectonophysics, 1986, 132, 69-77.	0.9	31
148	T-wave duration, magnitudes and seismic moment of an earthquake - Application to tsunami warning Journal of Physics of the Earth, 1986, 34, 19-42.	1.4	42
149	Stacking investigations of higherâ€order mantle Rayleigh waves. Geophysical Research Letters, 1985, 12, 421-424.	1.5	9
150	A model for the plate tectonic evolution of the east-central Pacific based on SEASAT investigations. Earth and Planetary Science Letters, 1985, 72, 99-116.	1.8	82
151	New surveys of MacDonald Seamount, southcentral Pacific, following volcanoseismic activity, 1977â€1983. Geophysical Research Letters, 1984, 11, 813-816.	1.5	27
152	Regional dispersion of first-order overtone Rayleigh waves. Geophysical Journal International, 1983, 72, 461-481.	1.0	13
153	The Gilbert Islands (Republic of Kiribati) earthquake swarm of 1981–1983. Physics of the Earth and Planetary Interiors, 1983, 33, 284-303.	0.7	26
154	Mapping the Miocene Farallon Ridge jump on the Pacific plate: a seismic line of weakness. Earth and Planetary Science Letters, 1983, 63, 113-122.	1.8	19
155	Slow earthquakes along oceanic fracture zones: evidence for asthenospheric flow away from hotspots?. Earth and Planetary Science Letters, 1982, 57, 75-87.	1.8	73
156	Mode-wave equivalence and other asymptotic problems in tsunami theory. Physics of the Earth and Planetary Interiors, 1982, 30, 1-11.	0.7	55
157	Higher moment excitation of normal modes and surface waves Journal of Physics of the Earth, 1982, 30, 1-31.	1.4	11
158	A negative search for an ultra-slow component to the source of the Yunnan earthquakes of May 29, 1976. Physics of the Earth and Planetary Interiors, 1981, 26, 208-216.	0.7	4
159	Intraplate seismicity of antarctica and tectonic implications. Earth and Planetary Science Letters, 1981, 52, 397-409.	1.8	38
160	Rayleigh-wave phase velocities in French Polynesia. Geophysical Journal International, 1980, 63, 719-733.	1.0	18
161	Higher-mode Rayleigh waves studied as individual seismic phases. Earth and Planetary Science Letters, 1979, 43, 162-167.	1.8	10
162	On the observability of isotropic seismic sources: The July 31, 1970 Colombian earthquake. Physics of the Earth and Planetary Interiors, 1979, 18, 176-196.	0.7	46

#	Article	IF	CITATIONS
163	Shear-wave velocity at the base of the mantle from profiles of diffracted <i>SH</i> waves. Bulletin of the Seismological Society of America, 1979, 69, 1039-1053.	1.1	22
164	Observed very long period Rayleigh-wave phase velocities across the Canadian shield. Geophysical Journal International, 1978, 53, 663-668.	1.0	14
165	Theoretical models for Mars and their seismic properties. Icarus, 1978, 33, 514-528.	1.1	75
166	Seismicity and tectonics of the Ninetyeast Ridge Area: Evidence for internal deformation of the Indian Plate. Journal of Geophysical Research, 1978, 83, 2233-2245.	3.3	217
167	A physical classification of the earth's spheroidal modes Journal of Physics of the Earth, 1978, 26, 75-103.	1.4	30
168	Investigating the physical nature of the Coriolis effects in the fixed frame. American Journal of Physics, 1977, 45, 631-633.	0.3	8
169	The July 9 and 23, 1905, Mongolian earthquakes: A surface wave investigation. Earth and Planetary Science Letters, 1977, 34, 326-331.	1.8	31
170	The effect of intrinsic oceanic upper-mantle heterogeneity on regionalization of long-period Rayleigh-wave phase velocities. Geophysical Journal International, 1977, 49, 357-370.	1.0	74
171	A surface-wave investigation of the rupture mechanism of the Gobi-Altai (December 4, 1957) earthquake. Physics of the Earth and Planetary Interiors, 1976, 12, 319-328.	0.7	35
172	On the planetary theory of sunspots. Nature, 1975, 253, 511-513.	13.7	44
173	A teleseismic array study in French Polynesia; Implications for distant and local structure. Geophysical Research Letters, 1975, 2, 5-8.	1.5	11
174	A study of lateral inhomogeneities in the upper mantle by multiple Scs travelâ€ŧime residuals. Geophysical Research Letters, 1975, 2, 313-316.	1.5	73
175	Investigation of the 600-km discontinuity under France through travel-time and amplitude anomalies. Physics of the Earth and Planetary Interiors, 1974, 8, 269-276.	0.7	3