List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7047961/publications.pdf Version: 2024-02-01

		185998	214527
115	2,814	28	47
papers	citations	h-index	g-index
123	123	123	1740
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Carbon Dioxide Contamination of Aqueous Morpholine Solutions and Effects on Secondary Coolant Chemistry Under CANDU Conditions. Nuclear Technology, 2022, 208, 192-201.	0.7	0
2	Deuterium Isotope Effects on the Second Ionization Constant of Aqueous Sulfuric Acid from 25°C to 200°C using Raman Spectroscopy. Journal of Solution Chemistry, 2022, 51, 479-498.	0.6	2
3	A study of the deuterium isotope effect on zinc(II) hydrolysis and solubility under hydrothermal conditions using density functional theory. Chemical Engineering Science, 2022, 254, 117596.	1.9	4
4	Third dissociation constant of phosphoric acid in H ₂ O and D ₂ O from 75 to 300 ŰC at <i>p</i> = 20.4 MPa using Raman spectroscopy and a titanium-sapphire flow cell. Physical Chemistry Chemical Physics, 2021, 23, 10670-10685.	1.3	8
5	Standard Partial Molar Heat Capacities and Volumes of Aqueous <i>N</i> , <i>N</i> ,Olimethylethanolamine and <i>N</i> , <i>N</i> ,Olimethylethanolammonium Chloride from 283.15 to 393.15 K, and Ionization Constants to 598.15 K. Journal of Chemical & Engineering Data. 2021. 66. 4180-4192.	1.0	1
6	The Ionization Constant of Water at Elevated Temperatures and Pressures: New Data from Direct Conductivity Measurements and Revised Formulations from <i>T</i> = 273 K to 674 K and <i>p</i> = 0.1 MPa to 31 MPa. Journal of Physical and Chemical Reference Data, 2020, 49, .	1.9	10
7	Second Dissociation Constant of Carbonic Acid in H ₂ O and D ₂ O from 150 to 325 ŰC at <i>p</i> = 21 MPa Using Raman Spectroscopy and a Sapphire-Windowed Flow Cell. Journal of Physical Chemistry B, 2020, 124, 2600-2617.	1.2	5
8	Investigation of Uranyl Sulfate Complexation under Hydrothermal Conditions by Quantitative Raman Spectroscopy and Density Functional Theory. Journal of Physical Chemistry B, 2019, 123, 7385-7409.	1.2	11
9	Thermodynamics of Polyborates under Hydrothermal Conditions: Formation Constants and Limiting Conductivities of Triborate and Diborate. Journal of Chemical & Engineering Data, 2019, 64, 4430-4443.	1.0	12
10	Triborate Formation Constants and Polyborate Speciation under Hydrothermal Conditions by Raman Spectroscopy using a Titanium/Sapphire Flow Cell. Journal of Physical Chemistry B, 2019, 123, 5147-5159.	1.2	18
11	Carbamate Formation in the System (2-Methylpiperidine + Carbon Dioxide) by Raman Spectroscopy and X-ray Diffraction. Journal of Physical Chemistry B, 2018, 122, 10880-10893.	1.2	7
12	Formation Constants and Conformational Analysis of Carbamates in Aqueous Solutions of 2-Methylpiperidine and CO ₂ from 283 to 313 K by NMR Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 9178-9190.	1.2	6
13	Ionization Constants of DL-2-Aminobutyric Acid and DL-Norvaline Under Hydrothermal Conditions by UV–Visible Spectroscopy. Journal of Solution Chemistry, 2017, 46, 388-423.	0.6	0
14	Thermodynamics of aqueous adenine: Standard partial molar volumes and heat capacities of adenine, adeninium chloride, and sodium adeninate from T = 283.15 K to 363.15 K. Journal of Chemical Thermodynamics, 2017, 112, 129-145.	1.0	6
15	Standard partial molar heat capacities and volumes of aqueous N-methylpiperidine and N-methylpiperidinium chloride from 283 K to 393 K. Journal of Chemical Thermodynamics, 2017, 113, 377-387.	1.0	2
16	Raman Spectroscopic and ab Initio Investigation of Aqueous Boric Acid, Borate, and Polyborate Speciation from 25 to 80 °C. Industrial & Engineering Chemistry Research, 2017, 56, 13983-13996.	1.8	42
17	lon-Pair Formation Constants of Lithium Borate and Lithium Hydroxide under Pressurized Water Nuclear Reactor Coolant Conditions. Industrial & Engineering Chemistry Research, 2017, 56, 8121-8132.	1.8	13
18	Absorption of CO 2 in aqueous solutions of 2-methylpiperidine: Heats of solution and modeling. International Journal of Greenhouse Gas Control, 2016, 47, 322-329.	2.3	19

#	Article	IF	CITATIONS
19	The limiting conductivity of the borate ion and its ion-pair formation constants with sodium and potassium under hydrothermal conditions. Physical Chemistry Chemical Physics, 2016, 18, 24081-24094.	1.3	16
20	Non-Complexing Anions for Quantitative Speciation Studies Using Raman Spectroscopy in Fused Silica High-Pressure Optical Cells under Hydrothermal Conditions. Applied Spectroscopy, 2015, 69, 972-983.	1.2	18
21	Limiting Conductivities of Univalent Cations and the Chloride Ion in H2O and D2O Under Hydrothermal Conditions. Journal of Solution Chemistry, 2015, 44, 1062-1089.	0.6	16
22	Theoretical study of deuterium isotope effects on acid–base equilibria under ambient and hydrothermal conditions. RSC Advances, 2015, 5, 9097-9109.	1.7	25
23	Thermodynamics of the Sodium–Iron–Phosphate–Water System Under Hydrothermal Conditions: The Gibbs Energy of Formation of Sodium Iron(III) Hydroxy Phosphate, Na3Fe(PO4)2·(Na4/3H2/3O), from Solubility Measurements in Equilibrium with Hematite at 498–598ÂK. Journal of Solution Chemistry, 2015. 44. 1121-1140.	0.6	3
24	Raman and ab Initio Investigation of Aqueous Cu(I) Chloride Complexes from 25 to 80 °C. Journal of Physical Chemistry B, 2014, 118, 204-214.	1.2	26
25	Standard partial molar heat capacities and enthalpies of formation of aqueous aluminate under hydrothermal conditions from integral heat of solution measurements. Journal of Chemical Thermodynamics, 2014, 78, 79-92.	1.0	2
26	lon-pair formation in aqueous strontium chloride and strontium hydroxide solutions under hydrothermal conditions by AC conductivity measurements. Physical Chemistry Chemical Physics, 2014, 16, 17688-17704.	1.3	25
27	Solution Calorimetry Under Hydrothermal Conditions. Reviews in Mineralogy and Geochemistry, 2013, 76, 219-263.	2.2	13
28	7. Solution Calorimetry Under Hydrothermal Conditions. , 2013, , 219-264.		2
29	Water Chemistry in a Supercritical Water-Cooled Pressure Tube Reactor. Nuclear Technology, 2012, 179, 205-219.	0.7	59
30	Limiting Conductivities and Ion Association in Aqueous NaCF ₃ SO ₃ and Sr(CF ₃ SO ₃) ₂ from (298 to 623) K at 20 MPa. Is Triflate a Non-Complexing Anion in High-Temperature Water?. Journal of Chemical & Engineering Data, 2012, 57, 3180-3197.	1.0	16
31	Ionization constants and thermal stabilities of uracil and adenine under hydrothermal conditions as measured by in situ UV–visible spectroscopy. Geochimica Et Cosmochimica Acta, 2012, 93, 182-204.	1.6	11
32	Limiting Conductivities and Ion Association Constants of Aqueous NaCl under Hydrothermal Conditions: Experimental Data and Correlations. Journal of Chemical & Engineering Data, 2012, 57, 2415-2429.	1.0	35
33	lon Association in Dilute Aqueous Magnesium Sulfate and Nickel Sulfate Solutions Under Hydrothermal Conditions by Flow Conductivity Measurements. Journal of Chemical & Engineering Data, 2011, 56, 889-898.	1.0	15
34	Deuterium Isotope Effects on the Ionization Constant of Acetic Acid in H ₂ O and D ₂ O by AC Conductance from 368 to 548 K at 20 MPa. Journal of Physical Chemistry B, 2011, 115, 3038-3051.	1.2	24
35	Complexation in the Cu(II)–LiCl–H2O system at temperatures to 423K by UV-Visible spectroscopy. International Journal of Hydrogen Energy, 2010, 35, 4893-4900.	3.8	16
36	Measurement of reaction enthalpy during pressure oxidation of sulphide minerals. Journal of Thermal Analysis and Calorimetry, 2009, 96, 117-124.	2.0	10

#	Article	IF	CITATIONS
37	D2O Isotope Effects on the Ionization of β-Naphthol andÂBoric Acid at Temperatures from 225 to 300 °C usingÂUV-Visible Spectroscopy. Journal of Solution Chemistry, 2009, 38, 805-826.	0.6	19
38	Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu–Cl cycle. International Journal of Hydrogen Energy, 2009, 34, 2901-2917.	3.8	192
39	Spectrophotometric Determination of the Ionization Constants of Aqueous Nitrophenols at Temperatures upÂto 225 °C. Journal of Solution Chemistry, 2008, 37, 857-874.	0.6	22
40	Standard Partial Molar Volumes of Some Aqueous Alkanolamines and Alkoxyamines at Temperatures up to 325 °C:  Functional Group Additivity in Polar Organic Solutes under Hydrothermal Conditions. Journal of Physical Chemistry B, 2008, 112, 5626-5645.	1.2	8
41	Apparent Molar Volumes and Standard Partial Molar Volumes of Aqueous Sodium Phosphate Salts at Elevated Temperatures. Journal of Chemical & Engineering Data, 2008, 53, 1728-1737.	1.0	4
42	Apparent and Standard Partial Molar Volumes of NaCl, NaOH, and HCl in Water and Heavy Water atT= 523 K and 573 K atp= 14 MPa. Journal of Physical Chemistry B, 2007, 111, 2015-2024.	1.2	27
43	Standard Partial Molar Volumes of Aqueous 2- and 3-Hydroxypropionic Acid from 100 to 325 °C: Functional Group Additivity in Isomers with Closely Spaced Polar Groups. Journal of Solution Chemistry, 2007, 36, 1525-1546.	0.6	3
44	Thermodynamics of aqueous methyldiethanolamine (MDEA) and methyldiethanolammonium chloride (MDEAH+Clâ~') over a wide range of temperature and pressure: Apparent molar volumes, heat capacities, and isothermal compressibilities. Journal of Chemical Thermodynamics, 2006, 38, 988-1007.	1.0	14
45	Standard enthalpy of formation of aqueous titanyl chloride, TiOCl2(aq), at T=298.15K. Journal of Chemical Thermodynamics, 2006, 38, 1563-1567.	1.0	4
46	Thermodynamics of Aqueous Nitrilotriacetic Acid (NTA) Systems: Apparent and Partial Molar Heat Capacities and Volumes of Aqueous HNTA2Ⱂ, NTA3Ⱂ, MgNTAⰒ, CoNTAⰒ, NiNTAⰒ and CuNTAⰒ at 25 °C. Journal of Solution Chemistry, 2006, 35, 1303-1313.	0.6	2
47	Volumetric behavior of water–methanol mixtures in the vicinity of the critical region. Fluid Phase Equilibria, 2006, 245, 125-133.	1.4	11
48	Ionization Constants of Aqueous Glycolic Acid at Temperatures up to 250 â~C Using Hydrothermal pH Indicators and UV-Visible Spectroscopy. Journal of Solution Chemistry, 2005, 34, 769-788.	0.6	15
49	lonization constants of aqueous amino acids at temperatures up to 250°C using hydrothermal pH indicators and UV-visible spectroscopy: Glycine, α-alanine, and proline. Geochimica Et Cosmochimica Acta, 2005, 69, 3029-3043.	1.6	33
50	Standard Partial Molar Volumes of Aqueous Glycolic Acid and Tartaric Acid from 25 to 350 °C:Â Evidence of a Negative Krichevskii Parameter for a Neutral Organic Solute. Journal of Physical Chemistry B, 2005, 109, 20539-20545.	1.2	11
51	Ionization equilibria of acids and bases under hydrothermal conditions. , 2004, , 441-492.		14
52	Apparent and standard partial molar heat capacities and volumes of aqueous tartaric acid and its sodium salts at elevated temperature and pressure. Journal of Chemical Thermodynamics, 2004, 36, 127-140.	1.0	8
53	Thermodynamics of aqueous amines: excess molar heat capacities, volumes, and expansibilities of {water+ methyldiethanolamine (MDEA)} and {water + 2-amino-2-methyl-1-propanol (AMP)}. Journal of Chemical Thermodynamics, 2002, 34, 679-710.	1.0	50
54	Partial molar volume study of the complexes of calix[4]naphthalenes with [60]fullerene in different solvents. Perkin Transactions II RSC, 2001, , 3-6.	1.1	22

#	Article	IF	CITATIONS
55	Title is missing!. Journal of Solution Chemistry, 2001, 30, 585-622.	0.6	49
56	Title is missing!. Journal of Solution Chemistry, 2001, 30, 201-211.	0.6	11
57	Apparent and partial molar heat capacities and volumes of aqueous adipic acid, l-tartaric acid, and their sodium salts atT= 298.15 K. Journal of Chemical Thermodynamics, 2000, 32, 1513-1523.	1.0	3
58	Title is missing!. Journal of Solution Chemistry, 2000, 29, 889-904.	0.6	16
59	Thermodynamic properties of aqueous diethanolamine (DEA), <i>N</i> , <i>N</i> -dimethylethanolamine (DMEA), and their chloride salts: apparent molar heat capacities and volumes at temperatures from 283.15 to 328.15 K. Canadian Journal of Chemistry, 2000, 78, 151-165.	0.6	11
60	Amino Acids under Hydrothermal Conditions:  Apparent Molar Heat Capacities of Aqueous α-Alanine, β-Alanine, Glycine, and Proline at Temperatures from 298 to 500 K and Pressures up to 30.0 MPa. Journal of Physical Chemistry B, 2000, 104, 11781-11793.	1.2	43
61	Title is missing!. Journal of Solution Chemistry, 1999, 28, 621-630.	0.6	73
62	Thermodynamics of Aqueous Diethylenetriaminepentaacetic Acid (DTPA) Systems: Apparent and Partial Molar Heat Capacities and Volumes of Aqueous H2DTPA3â^', DTPA5â^', CuDTPA3â^', and Cu2DTPAâ^' from 10 to 55°C. Journal of Solution Chemistry, 1999, 28, 291-325.	0.6	13
63	Densities and apparent molar volumes ofGd(CF3SO3)3(aq)atT=(373, 423, and 472) K andp= (7and 26) MPa. Journal of Chemical Thermodynamics, 1999, 31, 1055-1065.	1.0	6
64	Enthalpies of formation and heat capacity functions for maricite,NaFePO4(cr), and sodium iron(III) hydroxy phosphate,Na3Fe(PO4)2· (Na4/3H2/3O)(cr). Journal of Chemical Thermodynamics, 1999, 31, 1307-1320.	1.0	13
65	Raman- and Infrared Spectroscopic Investigation of Aqueous ZnSO ₄ Solutions from 8°C to 165°C: Inner- and Outer-Sphere Complexes. Zeitschrift Fur Physikalische Chemie, 1999, 209, 181-207.	1.4	50
66	Amino Acids under Hydrothermal Conditions: Apparent Molar Volumes of Aqueous α-Alanine, β-Alanine, and Proline at Temperatures from 298 to 523 K and Pressures up to 20.0 MPa. Journal of Physical Chemistry B, 1999, 103, 5131-5144.	1.2	46
67	Synthesis and Crystal Structure of Maricite and Sodium Iron(III) Hydroxyphosphate. Chemistry of Materials, 1998, 10, 763-768.	3.2	80
68	Thermodynamic Properties of Aqueous Morpholine and Morpholinium Chloride at Temperatures from 10 to 300 °C: Apparent Molar Volumes, Heat Capacities, and Temperature Dependence of Ionization. Journal of Physical Chemistry B, 1997, 101, 409-419.	1.2	38
69	Title is missing!. Journal of Solution Chemistry, 1997, 26, 1113-1143.	0.6	19
70	Raman spectroscopic investigation of aqueous FeSO4 in neutral and acidic solutions from 25‡C to 303‡C: inner- and outer-sphere complexes. Journal of Solution Chemistry, 1997, 26, 757-777.	0.6	49
71	Apparent molar volumes of aqueous sodium trifluoromethanesulfonate and trifluoromethanesulfonic acid from 283 K to 600 K and pressures up to 20 MPa. Journal of Solution Chemistry, 1997, 26, 277-294.	0.6	24
72	Excess molar volumes and densities of (methanol+water) at temperatures between 323 K and 573 K and pressures of 7.0 MPa and 13.5 MPa. Journal of Chemical Thermodynamics, 1997, 29, 261-286.	1.0	70

#	Article	IF	CITATIONS
73	The thermodynamics of aqueous trivalent rare earth elements. Apparent molar heat capacities and volumes of Nd(ClO4)3(aq), Eu(ClO4)3(aq), Er(ClO4)3(aq), and Yb(ClO4)3(aq) from the temperatures 283 K to 328 K. Journal of Chemical Thermodynamics, 1997, 29, 827-852.	1.0	12
74	Apparent Molar Volumes of La(CF3SO3)3(aq) and Gd(CF3SO3)3(aq) at 278 K, 298 K, and 318 K at Pressures to 30.0 MPa. Journal of Chemical & Engineering Data, 1996, 41, 1075-1078.	1.0	11
75	Apparent molar heat capacities and volumes of LaCl3(aq), La(ClO4)3(aq), and Gd(ClO4)3(aq) between the temperatures 283 K and 338 K. Journal of Chemical Thermodynamics, 1996, 28, 43-66.	1.0	24
76	Excess molar enthalpies of (carbon dioxide+ethylene glycol dimethyl ether or 2-methoxyethyl ether) at the temperatures 298.15 K and 308.15 K and pressures from 7.5 MPa to 12.5 MPa. Journal of Chemical Thermodynamics, 1996, 28, 577-587.	1.0	6
77	Excess molar enthalpies of six (carbon dioxide + a polar solvent) mixtures at the temperatures 298.15 K and 308.15 K and pressures from 7.5 MPa to 12.6 MPa. Journal of Chemical Thermodynamics, 1996, 28, 1303-1317.	1.0	17
78	Excess enthalpies of (carbon dioxide + propylene carbonate orN-methyl-Îμ-caprolactam or 1-formyl) Tj ETQq0 0 0 Chemical Thermodynamics, 1995, 27, 1169-1185.	rgBT /Ove 1.0	erlock 10 Tf 5 11
79	Thermodynamics of aqueous phosphate solutions: Apparent molar heat capacities and volumes of the sodium and tetramethylammonium salts at 25�C. Journal of Solution Chemistry, 1995, 24, 439-463.	0.6	18
80	Thermodynamics of aqueous zinc: Standard partial molar heat capacities and volumes of Zn2+(aq) from 10 to 55°C. Geochimica Et Cosmochimica Acta, 1994, 58, 4867-4874.	1.6	14
81	Raman studies of hydration of hydroxy complexes and the effect on standard partial molar heat capacities. Geochimica Et Cosmochimica Acta, 1992, 56, 2573-2577.	1.6	18
82	Thermodynamics of aqueous uranyl ion: Apparent and partial molar heat capacities and volumes of aqueous uranyl perchlorate from 10 to 55ŰC. Geochimica Et Cosmochimica Acta, 1989, 53, 1503-1509.	1.6	16
83	Apparent molar heat capacities and volumes of aqueous HClO4, HNO3, (CH3)4NOH and K2SO4 at 298.15 K. Thermochimica Acta, 1988, 126, 245-253.	1.2	44
84	Apparent molar heat capacities and apparent molar volumes of Hg(ClO4)2(aq) and Pb(ClO4)2(aq) at 298.15 K. Journal of Chemical Thermodynamics, 1988, 20, 595-602.	1.0	23
85	Thermodynamics of aqueous aluminate ion: standard partial molar heat capacities and volumes of tetrahydroxyaluminate(1-)(aq) from 10 to 55.degree.C. The Journal of Physical Chemistry, 1988, 92, 1323-1332.	2.9	48
86	Thermodynamics of aqueous EDTA systems: Apparent and partial molar heat capacities and volumes of aqueous EDTA4â'', HEDTA3â'', H2EDTA2â'', NaEDTA3â'', and KEDTA3â'' at 25 °C. Relaxation effects in mixed aqueous electrolyte solutions and calculations of temperature dependent equilibrium constants. Canadian Journal of Chemistry, 1988, 66, 881-896.	0.6	18
87	Thermodynamics of aqueous aluminum: Standard partial molar heat capacities of Al3+ from 10 to 55°C. Geochimica Et Cosmochimica Acta, 1986, 50, 453-459.	1.6	59
88	Apparent molar heat capacities and volumes of alkylbenzenesulfonate salts in water: substituent group additivity. Canadian Journal of Chemistry, 1986, 64, 394-398.	0.6	5
89	Thermodynamics of the Complexes of Aqueous Iron (III). Aluminum and Several Divalent Cations with EDTA: Heat Capacities, Volumes, and Variations in Stability with Temperature - Correction. The Journal of Physical Chemistry, 1986, 90, 4218-4218.	2.9	1
90	Thermodynamics of aqueous EDTA systems: Apparent and partial molar heat capacities and volumes of aqueous strontium and barium EDTA. Journal of Solution Chemistry, 1986, 15, 977-987.	0.6	11

#	Article	IF	CITATIONS
91	The apparent molar heat capacity of aqueous hydrochloric acid from 10 to 140�C. Journal of Solution Chemistry, 1986, 15, 1-22.	0.6	60
92	Vapour liquid equilibrium calculations for dilute aqueous solutions of CO ₂ , H ₂ S, NH ₃ and NaOH to 300°C. Canadian Journal of Chemical Engineering, 1985, 63, 294-300.	0.9	22
93	Thermodynamics of the complexes of aqueous iron(III), aluminum and several divalent cations with EDTA: heat capacities, volumes, and variations in stability with temperature. The Journal of Physical Chemistry, 1985, 89, 5541-5549.	2.9	34
94	Thermodynamics of aqueous carbon dioxide and sulfur dioxide: heat capacities, volumes, and the temperature dependence of ionization. Canadian Journal of Chemistry, 1983, 61, 2509-2519.	0.6	80
95	Mechanisms of Leaching and Dissolution of UO ₂ Fuel. Nuclear Technology, 1982, 56, 238-253.	0.7	40
96	Apparent molal heat capacities and volumes of aqueous hydrogen sulfide and sodium hydrogen sulfide near 25 °C: the temperature dependence of H2S ionization. Canadian Journal of Chemistry, 1982, 60, 1872-1880.	0.6	66
97	Determination of low specific surface areas of minerals and oxides by gas–solid chromatography. Canadian Journal of Chemistry, 1982, 60, 2859-2862.	0.6	3
98	Solubility of uranium (IV) oxide in alkaline aqueous solutions to 300�C. Journal of Solution Chemistry, 1981, 10, 221-230.	0.6	30
99	Initial thermoelectric power of the silver-silver chloride electrode from 30 to 90.degree.C. An ionic scale for .hivin.Cp.degree. of aqueous electrolytes. The Journal of Physical Chemistry, 1981, 85, 1977-1983.	2.9	6
100	Thermodynamics of liquid and supercritical water to 900.degree.C by a Monte-Carlo method. The Journal of Physical Chemistry, 1980, 84, 3304-3306.	2.9	15
101	The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300�C. Journal of Solution Chemistry, 1980, 9, 415-442.	0.6	157
102	The solubility of nickel oxide and hydrolysis of Ni2+ in water to 573 K. Journal of Chemical Thermodynamics, 1980, 12, 521-538.	1.0	78
103	Uranium and plutonium equilibriums in aqueous solutions to 200.degree.C. Journal of Chemical & Engineering Data, 1980, 25, 361-370.	1.0	123
104	Sodium oxide-phosphorus(V) oxide-water phase diagram near 300.degree.C: Equilibrium solid phases. Inorganic Chemistry, 1979, 18, 2947-2953.	1.9	8
105	Calculation of Gibbs free energies of aqueous electrolytes to 350.degree.C from an electrostatic model for ionic hydration. The Journal of Physical Chemistry, 1978, 82, 2317-2321.	2.9	32
106	Empirical correlations between solvent properties and the optical excitation energies of solvated electrons. The Journal of Physical Chemistry, 1978, 82, 224-226.	2.9	6
107	Polymorphism in phenol under pressure: dielectric properties and molar polarizations of polycrystalline phenol I and II. Canadian Journal of Chemistry, 1977, 55, 1294-1302.	0.6	2
108	A calculation of gibbs free energies for ferrous ions and the solubility of magnetite in H2O and D2O to 300°C. Thermochimica Acta, 1977, 19, 287-300.	1.2	24

#	Article	IF	CITATIONS
109	Corrosion product stability in high temperature aqueous systems-deuterium isotope effects. Journal of Nuclear Materials, 1977, 68, 351-354.	1.3	0
110	The adsorption of n-decane on the surface of water-swollen cellulose fibers. Journal of Colloid and Interface Science, 1977, 60, 548-554.	5.0	4
111	Determination of Brunauer-Emmett-Teller monolayer capacities by gas-solid chromatography. Analytical Chemistry, 1976, 48, 380-382.	3.2	25
112	Polymorphism in phenol under pressure: The xâ€ray powder diffraction patterns of phenol I and II at â^190 °C, and the volume compressibilities of phenol I and II at 10 °C. Journal of Chemical Physics, 19 3334-3336.	97 <u>5</u> 263,	9
113	Adsorption of non-swelling vapours on the surface of cellulose. Journal of the Chemical Society Faraday Transactions I, 1975, 71, 2170.	1.0	28
114	The Static Dielectric Constants of the Liquified Fluoromethanes. Canadian Journal of Chemistry, 1973, 51, 1497-1503.	0.6	19
115	Polymorphism in phenol under pressure: The volume compressibilities of phenol I and II at 10°C, and the phase diagram below 0°C. Journal of Chemical Physics, 1973, 58, 854-856.	1.2	8