Arnau Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7047185/publications.pdf

Version: 2024-02-01

		566801	552369	
28	976	15	26	
papers	citations	h-index	g-index	
28	28	28	1164	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Mycotoxin Biomarkers of Exposure: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1127-1155.	5.9	134
2	The mycotoxin patulin: An updated short review on occurrence, toxicity and analytical challenges. Food and Chemical Toxicology, 2019, 129, 249-256.	1.8	106
3	Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in wheat and oat based bran supplements sold in the Spanish market. Food and Chemical Toxicology, 2013, 53, 133-138.	1.8	96
4	Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Scientific Reports, 2018, 8, 5255.	1.6	85
5	Thermal stability and kinetics of degradation of deoxynivalenol, deoxynivalenol conjugates and ochratoxin A during baking of wheat bakery products. Food Chemistry, 2015, 178, 276-286.	4.2	66
6	Genetic and Toxigenic Variability within Aspergillus flavus Population Isolated from Maize in Two Diverse Environments in Kenya. Frontiers in Microbiology, 2018, 9, 57.	1.5	66
7	Stability of DON and OTA during the breadmaking process and determination of process and performance criteria. Food Control, 2014, 40, 234-242.	2.8	65
8	Development and validation of an LC–MS/MS method for the simultaneous determination of citrinin and ochratoxin a in a variety of feed and foodstuffs. Journal of Chromatography A, 2018, 1580, 100-109.	1.8	47
9	Dietary exposure assessment and risk characterization of citrinin and ochratoxin A in Belgium. Food and Chemical Toxicology, 2021, 147, 111914.	1.8	33
10	Hydrolysers of modified mycotoxins in maize: \hat{l}_{\pm} -Amylase and cellulase induce an underestimation of the total aflatoxin content. Food Chemistry, 2018, 248, 86-92.	4.2	32
11	Biomonitoring of Deoxynivalenol and Deoxynivalenol-3-glucoside in Human Volunteers: Renal Excretion Profiles. Toxins, 2019, 11, 466.	1.5	32
12	The fate of deoxynivalenol through wheat processing to food products. Current Opinion in Food Science, 2016, 11, 34-39.	4.1	28
13	Enzyme bread improvers affect the stability of deoxynivalenol and deoxynivalenol-3-glucoside during breadmaking. Food Chemistry, 2016, 208, 288-296.	4.2	27
14	Stability and kinetics of leaching of deoxynivalenol, deoxynivalenol-3-glucoside and ochratoxin A during boiling of wheat spaghettis. Food Research International, 2016, 85, 182-190.	2.9	23
15	LC-MS/MS methodology for simultaneous determination of patulin and citrinin in urine and plasma applied to a pilot study in colorectal cancer patients. Food and Chemical Toxicology, 2020, 136, 110994.	1.8	19
16	Effect of xylanase and \hat{l}_{\pm} -amylase on DON and its conjugates during the breadmaking process. Food Research International, 2017, 101, 139-147.	2.9	16
17	The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: from field observations to toxicokinetics. Archives of Toxicology, 2019, 93, 293-310.	1.9	16
18	A Study of Carry-Over and Histopathological Effects after Chronic Dietary Intake of Citrinin in Pigs, Broiler Chickens and Laying Hens. Toxins, 2020, 12, 719.	1.5	15

#	Article	IF	CITATIONS
19	Human Mycotoxin Biomonitoring: Conclusive Remarks on Direct or Indirect Assessment of Urinary Deoxynivalenol. Toxins, 2020, 12, 139.	1.5	12
20	Deoxynivalenol exposure assessment through a modelling approach of food intake and biomonitoring data $\hat{a} \in \text{``A contribution to the risk assessment of an enteropathogenic mycotoxin. Food Research International, 2021, 140, 109863.}$	2.9	12
21	Food Consumption Data as a Tool to Estimate Exposure to Mycoestrogens. Toxins, 2020, 12, 118.	1.5	10
22	Comprehensive toxicokinetic analysis reveals major interspecies differences in absorption, distribution and elimination of citrinin in pigs and broiler chickens. Food and Chemical Toxicology, 2020, 141, 111365.	1.8	9
23	Stability of DON and DON-3-glucoside during baking as affected by the presence of food additives. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 529-537.	1.1	8
24	Essential descriptors for mycotoxin contamination data in food and feed. Food Research International, 2022, 152, 110883.	2.9	8
25	Volumetric Absorptive Microsampling as an Alternative Tool for Biomonitoring of Multi-Mycotoxin Exposure in Resource-Limited Areas. Toxins, 2021, 13, 345.	1.5	5
26	A concise review towards defining the exposome of oesophageal cancer in sub-Saharan Africa. Environment International, 2021, 157, 106880.	4.8	5
27	Mycotoxins as Endocrine Disruptors – An Emerging Threat. , 2021, , 180-192.		1
28	Development of an <i>in vitro</i> gastro-intestinal pig model to screen potential detoxifying agents for the mycotoxin deoxynivalenol. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 488-500.	1.1	0