
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7047148/publications.pdf Version: 2024-02-01

YUNOING KANG

#	Article	IF	CITATIONS
1	Toxicological Effect of ZnO Nanoparticles Based on Bacteria. Langmuir, 2008, 24, 4140-4144.	1.6	549
2	Vascularized Bone Tissue Engineering: Approaches for Potential Improvement. Tissue Engineering - Part B: Reviews, 2012, 18, 363-382.	2.5	259
3	Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnology Advances, 2018, 36, 1063-1078.	6.0	173
4	Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomaterialia, 2012, 8, 1768-1777.	4.1	164
5	Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomaterialia, 2013, 9, 4906-4915.	4.1	129
6	The osteogenic differentiation of human bone marrow MSCs on HUVEC-derived ECM and β-TCP scaffold. Biomaterials, 2012, 33, 6998-7007.	5.7	119
7	Enhanced mechanical performance and biological evaluation of a PLGA coated β-TCP composite scaffold for load-bearing applications. European Polymer Journal, 2011, 47, 1569-1577.	2.6	106
8	Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2. Biomaterials, 2011, 32, 6119-6130.	5.7	101
9	Engineering Vascularized Bone Grafts by Integrating a Biomimetic Periosteum and β-TCP Scaffold. ACS Applied Materials & Interfaces, 2014, 6, 9622-9633.	4.0	101
10	Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors. Biomaterials, 2013, 34, 4971-4981.	5.7	84
11	Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS). Journal of Colloid and Interface Science, 2008, 322, 87-94.	5.0	77
12	The application of cell sheet engineering in the vascularization of tissue regeneration. Regenerative Medicine, 2016, 11, 559-570.	0.8	67
13	Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution. Journal of Colloid and Interface Science, 2009, 330, 380-385.	5.0	65
14	Synthesis and characteristics of monticellite bioactive ceramic. Journal of Materials Science: Materials in Medicine, 2008, 19, 1257-1263.	1.7	62
15	3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies. Acta Biomaterialia, 2019, 83, 119-129.	4.1	60
16	Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 85-97.	2.0	58
17	Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO–CaO–SiO2 system. Journal of Materials Science: Materials in Medicine, 2010, 21, 1463-1471.	1.7	57
18	A study on the in vitro degradation properties of poly(l-lactic acid)/β-tricalcuim phosphate(PLLA/β-TCP) scaffold under dynamic loading. Medical Engineering and Physics, 2009, 31, 589-594.	0.8	55

#	Article	IF	CITATIONS
19	Engineering Porous β-Tricalcium Phosphate (β-TCP) Scaffolds with Multiple Channels to Promote Cell Migration, Proliferation, and Angiogenesis. ACS Applied Materials & Interfaces, 2019, 11, 9223-9232.	4.0	54
20	Fabrication, vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects. Bone, 2014, 64, 173-182.	1.4	52
21	Channeled βâ€TCP Scaffolds Promoted Vascularization and Bone Augmentation in Mandible of Beagle Dogs. Advanced Functional Materials, 2016, 26, 6719-6727.	7.8	50
22	Preparation of decolorizing ceramsites for printing and dyeing wastewater with acid and base treated clay. Applied Clay Science, 2008, 40, 20-26.	2.6	49
23	Effect of Brain-Derived Neurotrophic Factor on the Neurogenesis and Osteogenesis in Bone Engineering. Tissue Engineering - Part A, 2018, 24, 1283-1292.	1.6	49
24	Preparation and <i>in vitro</i> bioactivity of novel merwinite ceramic. Biomedical Materials (Bristol), 2008, 3, 015015.	1.7	48
25	Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach. Acta Biomaterialia, 2015, 11, 449-458.	4.1	48
26	Channels in a porous scaffold: a new player for vascularization. Regenerative Medicine, 2018, 13, 705-715.	0.8	48
27	<i>In vitro</i> evaluation of an injectable chitosan gel for sustained local delivery of BMPâ€2 for osteoblastic differentiation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 380-390.	1.6	43
28	Characterization and Bacterial Response of Zinc Oxide Particles Prepared by a Biomineralization Process. Journal of Physical Chemistry B, 2009, 113, 6047-6053.	1.2	40
29	A comparative study of the in vitro degradation of poly(l-lactic acid)/β-tricalcium phosphate scaffold in static and dynamic simulated body fluid. European Polymer Journal, 2007, 43, 1768-1778.	2.6	37
30	Preparation and characterization of the biomineralized zinc oxide particles in spider silk peptides. Journal of Colloid and Interface Science, 2008, 325, 356-362.	5.0	37
31	Engineering biomimetic periosteum with \hat{l}^2 -TCP scaffolds to promote bone formation in calvarial defects of rats. Stem Cell Research and Therapy, 2017, 8, 134.	2.4	37
32	<i>In vitro</i> evaluation of photoâ€crosslinkable chitosan″actide hydrogels for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1393-1406.	1.6	36
33	Characterization and Biological Evaluation of Paclitaxel-Loaded Poly(l-lactic acid) Microparticles Prepared by Supercritical CO2. Langmuir, 2008, 24, 7432-7441.	1.6	35
34	Biodegradable photocrosslinkable poly(depsipeptideâ€ <i>co</i> â€îµâ€caprolactone) for tissue engineering: Synthesis, characterization, and <i>In vitro</i> evaluation. Journal of Polymer Science Part A, 2014, 52, 3307-3315.	2.5	33
35	Preparation of poly(l-lactic acid)/l²-tricalcium phosphate scaffold for bone tissue engineering without organic solvent. Materials Letters, 2008, 62, 2029-2032.	1.3	32
36	A Review of Self-Expanding Esophageal Stents for the Palliation Therapy of Inoperable Esophageal Malignancies. BioMed Research International, 2019, 2019, 1-11.	0.9	31

#	Article	IF	CITATIONS
37	Structure, morphology and fibroblasts adhesion of surface-porous titanium via anodic oxidation. Journal of Materials Science: Materials in Medicine, 2010, 21, 259-266.	1.7	29
38	Synthesis and characterization of novel multiphase bioactive glassâ€ceramics in the CaOâ€MgOâ€SiO ₂ system. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 194-202.	1.6	29
39	The preparation of BSA-PLLA microparticles in a batch supercritical anti-solvent process. Carbohydrate Polymers, 2009, 77, 244-249.	5.1	27
40	Endothelial pattern formation in hybrid constructs of additive manufactured porous rigid scaffolds and cell-laden hydrogels for orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 356-372.	1.5	27
41	Biomineralization of Uniform Gallium Oxide Rods with Cellular Compatibility. Inorganic Chemistry, 2009, 48, 6471-6479.	1.9	26
42	Graded Porous β-Tricalcium Phosphate Scaffolds Enhance Bone Regeneration in Mandible Augmentation. Journal of Craniofacial Surgery, 2015, 26, e148-e153.	0.3	26
43	A Highly Elastic and Autofluorescent Poly(xylitol-dodecanedioic Acid) for Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 1257-1267.	2.6	26
44	Well-aligned ZnO rod arrays grown on glass substrate from aqueous solution. Applied Surface Science, 2008, 254, 2917-2921.	3.1	25
45	Preparation and magnetic properties of Cu-ferrite nanorods and nanowires. Journal of Colloid and Interface Science, 2008, 317, 530-535.	5.0	23
46	Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes. Materials Science and Engineering C, 2015, 49, 541-548.	3.8	22
47	Injectable thermosensitive alginate/βâ€ŧricalcium phosphate/aspirin hydrogels for bone augmentation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1739-1751.	1.6	21
48	Synthesis and characterization of novel elastomeric poly(D,L-lactide urethane) maleate composites for bone tissue engineering. European Polymer Journal, 2013, 49, 3337-3349.	2.6	20
49	Development of MnO2 hollow nanoparticles for potential drug delivery applications. Nanotechnology, 2021, 32, 025713.	1.3	20
50	Preparation and properties of the green-emitting phosphors NaCa0.98â^'xMgxPO4:. Current Applied Physics, 2010, 10, 1216-1220.	1.1	19
51	Equilibrium of drops on inclined fibers. Journal of Colloid and Interface Science, 2009, 330, 399-403.	5.0	17
52	Geometrical versus Random \hat{l}^2 -TCP Scaffolds: Exploring the Effects on Schwann Cell Growth and Behavior. PLoS ONE, 2015, 10, e0139820.	1.1	16
53	Preparation and properties of red phosphor CaO: Eu3+. Journal of Materials Science, 2009, 44, 2388-2392.	1.7	15
54	Synthesis and characterization of vanadium carbide nanoparticles by thermal refluxing-derived precursors. Journal of Materials Science, 2011, 46, 3693-3697.	1.7	15

#	Article	IF	CITATIONS
55	Bioceramics in Tissue Engineering. , 2011, , 179-207.		14
56	Development of a decellularized porcine bone matrix for potential applications in bone tissue regeneration. Regenerative Medicine, 2020, 15, 1519-1534.	0.8	13
57	Preparation and Optical Properties of Biomimic Hierarchical ZnO Column Arrays. Crystal Growth and Design, 2009, 9, 707-714.	1.4	12
58	Immobilization of FGF on Poly(xylitol dodecanedioic Acid) Polymer for Tissue Regeneration. Scientific Reports, 2020, 10, 10419.	1.6	12
59	Preparation of titanium carbonitride nanoparticles from a novel refluxing-derived precursor. Materials Letters, 2009, 63, 1904-1906.	1.3	11
60	Effects of Macro-/Micro-Channels on Vascularization and Immune Response of Tissue Engineering Scaffolds. Cells, 2021, 10, 1514.	1.8	11
61	Multiple channels with interconnected pores in a bioceramic scaffold promote bone tissue formation. Scientific Reports, 2021, 11, 20447.	1.6	10
62	Preparation of titanium nitride nanoparticles from a novel refluxing derived precursor. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 429-433.	0.4	8
63	Induction of osteoconductivity by BMP-2 gene modification of mesenchymal stem cells combined with plasma-sprayed hydroxyapatite coating. Applied Surface Science, 2008, 255, 336-339.	3.1	7
64	Development of a Decellularized Porcine Esophageal Matrix for Potential Applications in Cancer Modeling. Cells, 2021, 10, 1055.	1.8	7
65	Synthesis and characterization of multiphase bioactive glass-ceramics in the CaO–MgO–SiO2 system with B2O3 additive. Journal of Materials Research, 2008, 23, 2873-2879.	1.2	5
66	Segmented Nanofibrils of Spiral Silk in Uloborus walckenaerius Spider. Journal of Physical Chemistry B, 2009, 113, 5092-5097.	1.2	5
67	The effects of tubular structure on biomaterial aided bone regeneration in distraction osteogenesis. Journal of Orthopaedic Translation, 2020, 25, 80-86.	1.9	5
68	Cell Biological Techniques and Cell-Biomaterial Interactions. Cells, 2020, 9, 2094.	1.8	3
69	Antibacterial properties of TiO2 ceramic pellets prepared using nano TiO2 powder. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 337-342.	0.4	2
70	Effect of thermal treatment on the structure and optical properties of biomimic hierarchical ZnO column arrays. Journal of Alloys and Compounds, 2010, 495, 275-279.	2.8	2
71	Degradation of residual formaldehyde in fabric by photo-catalysis. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 147-150.	0.4	Ο
72	Osteoinductive Observation for BMP-2 Gene Modification of Mesenchymal Stem Cells Combined with Plasma-sprayed Hydroxyapatite Coating. , 2008, , .		0

#	Article	IF	CITATIONS
73	2D Transient Viscoplastic Model for Dislocation Generation of SiC by PVT Method. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 135-139.	0.3	0