Nils-Petter Rudqvist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7046738/publications.pdf

Version: 2024-02-01

46 papers

2,270 citations

430874 18 h-index 302126 39 g-index

47 all docs

47
docs citations

47 times ranked

3271 citing authors

#	Article	IF	CITATIONS
1	Age-related long-term response in rat thyroid tissue and plasma after internal low dose exposure to 1311. Scientific Reports, 2022, 12, 2107.	3.3	O
2	Expression of the mono-ADP-ribosyltransferase ART1 by tumor cells mediates immune resistance in non–small cell lung cancer. Science Translational Medicine, 2022, 14, eabe8195.	12.4	16
3	Hallmarks of Resistance to Immune-Checkpoint Inhibitors. Cancer Immunology Research, 2022, 10, 372-383.	3.4	36
4	ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colorectal cancer. Science Immunology, 2022, 7, .	11.9	52
5	Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. Journal of Clinical Investigation, 2021, 131, .	8.2	111
6	Supporting the next generation of scientists to lead cancer immunology research. Cancer Immunology Research, 2021, 9, canimm.0519.2021.	3.4	1
7	T-Cell Receptor Profiling and Prognosis After Stereotactic Body Radiation Therapy For Stage I Non-Small-Cell Lung Cancer. Frontiers in Immunology, 2021, 12, 719285.	4.8	6
8	P854â€Construction of the immune landscape of durable response to checkpoint blockade therapy by integrating publicly available datasets. , 2020, , .		0
9	Preface: More than two decades of modern tumor immunology. Methods in Enzymology, 2020, 635, xix-xxxviii.	1.0	O
10	Preface: More than two decades of modern tumor immunology. Methods in Enzymology, 2020, 636, xvii-xxxvi.	1.0	0
11	Isolation of DNA from exosomes. Methods in Enzymology, 2020, 636, 173-183.	1.0	8
12	Characterization of conventional dendritic cell populations in preclinical tumor models using flow cytometry. Methods in Enzymology, 2020, 635, 139-148.	1.0	3
13	CD73 Blockade Promotes Dendritic Cell Infiltration of Irradiated Tumors and Tumor Rejection. Cancer Immunology Research, 2020, 8, 465-478.	3.4	87
14	Preface: More than two decades of modern tumor immunology. Methods in Enzymology, 2020, 631, xxiii-xlii.	1.0	1
15	Preface: More than two decades of modern tumor immunology. Methods in Enzymology, 2020, 632, xxiii-xlii.	1.0	O
16	Exercise reduces immune suppression and breast cancer progression in a preclinical model. Oncotarget, 2020, 11, 452-461.	1.8	70
17	Long-term transcriptomic and proteomic effects in Sprague Dawley rat thyroid and plasma after internal low dose 131I exposure. PLoS ONE, 2020, 15, e0244098.	2.5	7
18	T Cells: Friends and Foes. International Review of Cell and Molecular Biology, 2019, 342, xi-xiv.	3.2	3

#	Article	IF	CITATIONS
19	Transcriptional effects of 177Lu-octreotate therapy using a priming treatment schedule on GOT1 tumor in nude mice. EJNMMI Research, 2019, 9, 28.	2.5	3
20	Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Medicine, 2019, 11, 40.	8.2	179
21	Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop., 2019, 7, 131.		64
22	Mutational and Antigenic Landscape in Tumor Progression and Cancer Immunotherapy. Trends in Cell Biology, 2019, 29, 396-416.	7.9	66
23	Preface: More than two decades of modern tumor immunology. Methods in Enzymology, 2019, 629, xxi-xl.	1.0	1
24	Time-dependent transcriptional response of GOT1 human small intestine neuroendocrine tumor after 177Lu[Lu]-octreotate therapy. Nuclear Medicine and Biology, 2018, 60, 11-18.	0.6	7
25	Radiotherapy and CTLA-4 Blockade Shape the TCR Repertoire of Tumor-Infiltrating T Cells. Cancer Immunology Research, 2018, 6, 139-150.	3.4	172
26	Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nature Medicine, 2018, 24, 1845-1851.	30.7	626
27	Deconvolution of expression microarray data reveals 1311-induced responses otherwise undetected in thyroid tissue. PLoS ONE, 2018, 13, e0197911.	2.5	5
28	T Cells: Friends and Foes. International Review of Cell and Molecular Biology, 2018, 341, ix-xii.	3.2	1
29	Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs. Cancer Immunology Research, 2018, 6, 910-920.	3.4	245
30	Microarray Studies on 211At Administration in BALB/c Nude Mice Indicate Systemic Effects on Transcriptional Regulation in Nonthyroid Tissues. Journal of Nuclear Medicine, 2017, 58, 346-353.	5.0	10
31	Barriers to Radiation-Induced In Situ Tumor Vaccination. Frontiers in Immunology, 2017, 8, 229.	4.8	149
32	Hedgehog inhibitor sonidegib potentiates 177Lu-octreotate therapy of GOT1 human small intestine neuroendocrine tumors in nude mice. BMC Cancer, 2017, 17, 528.	2.6	24
33	Transcriptional response to 131I exposure of rat thyroid gland. PLoS ONE, 2017, 12, e0171797.	2.5	10
34	Non-targeted transcriptomic effects upon thyroid irradiation: similarity between in-field and out-of-field responses varies with tissue type. Scientific Reports, 2016, 6, 30738.	3.3	7
35	Circadian rhythm influences genome-wide transcriptional responses to $131\mathrm{I}$ in a tissue-specific manner in mice. EJNMMI Research, 2015, 5, 75.	2.5	12
36	Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration. PLoS ONE, 2015, 10, e0131686.	2.5	12

#	Article	IF	CITATIONS
37	Gene expression signature in mouse thyroid tissue after 131I and 211At exposure. EJNMMI Research, 2015, 5, 59.	2.5	13
38	Dose-specific transcriptional responses in thyroid tissue in mice after 131I administration. Nuclear Medicine and Biology, 2015, 42, 263-268.	0.6	19
39	Transcriptional response in normal mouse tissues after i.v. 211At administration - response related to absorbed dose, dose rate, and time. EJNMMI Research, 2015, 5, 1.	2.5	46
40	Time- and dose rate-related effects of internal 177Lu exposure on gene expression in mouse kidney tissue. Nuclear Medicine and Biology, 2014, 41, 825-832.	0.6	19
41	Transcriptional response of kidney tissue after 177Lu-octreotate administration in mice. Nuclear Medicine and Biology, 2014, 41, 238-247.	0.6	14
42	Biodistribution and Dosimetry of Free ²¹¹ At, ¹²⁵ I ^{â^'} and ¹³¹ I ^{â^'} in Rats. Cancer Biotherapy and Radiopharmaceuticals, 2013, 28, 657-664.	1.0	62
43	Comparative Analysis of Transcriptional Gene Regulation Indicates Similar Physiologic Response in Mouse Tissues at Low Absorbed Doses from Intravenously Administered 211At. Journal of Nuclear Medicine, 2013, 54, 990-998.	5.0	27
44	Transcriptional response of BALB/c mouse thyroids following in vivo astatine-211 exposure reveals distinct gene expression profiles. EJNMMI Research, 2012, 2, 32.	2.5	30
45	Effects of internal low-dose irradiation from 1311 on gene expression in normal tissues in Balb/c mice. EJNMMI Research, 2011, 1, 29.	2.5	24
46	Biodistribution of 177Lu-octreotate and 111In-minigastrin in female nude mice transplanted with human medullary thyroid carcinoma GOT2. Oncology Reports, 2011, 27, 174-81.	2.6	17