
Makaiko Chithambo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7046704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The analysis of time-resolved optically stimulated luminescence: II. Computer simulations and experimental results. Journal Physics D: Applied Physics, 2007, 40, 1880-1889.	2.8	79
2	A pulsed light-emitting-diode system for stimulation of luminescence. Measurement Science and Technology, 2000, 11, 418-424.	2.6	67
3	On the slow component of luminescence stimulated from quartz by pulsed blue light-emitting diodes. Nuclear Instruments & Methods in Physics Research B, 2001, 183, 358-368.	1.4	48
4	Thermoluminescence of α-Al2O3:C,Mg: Kinetic analysis of the main glow peak. Journal of Luminescence, 2017, 182, 177-182.	3.1	44
5	Dependence of the thermal influence on luminescence lifetimes from quartz on the duration of optical stimulation. Radiation Measurements, 2003, 37, 167-175.	1.4	40
6	The analysis of time-resolved optically stimulated luminescence: I. Theoretical considerations. Journal Physics D: Applied Physics, 2007, 40, 1874-1879.	2.8	40
7	Comprehensive kinetic analysis of thermoluminescence peaks of α-Al 2 O 3 :C,Mg. Journal of Luminescence, 2017, 185, 72-82.	3.1	34
8	Thermoluminescence of SrAl2O4:Eu2+, Dy3+: Kinetic analysis of a composite-peak. Radiation Measurements, 2017, 97, 1-13.	1.4	33
9	Thermal dependence of luminescence lifetimes and radioluminescence in quartz. Journal of Luminescence, 2014, 145, 38-48.	3.1	32
10	Time-resolved optically stimulated luminescence and spectral emission features of α-Al2O3:C. Physica B: Condensed Matter, 2015, 473, 62-71.	2.7	32
11	The influence of dose on the kinetic parameters and dosimetric features of the main thermoluminescence glow peak in α-Al 2 O 3 :C,Mg. Nuclear Instruments & Methods in Physics Research B, 2017, 394, 12-19.	1.4	32
12	Time-resolved luminescence of low sensitivity quartz from crystalline rocks. Radiation Measurements, 2007, 42, 205-212.	1.4	31
13	Kinetic analysis of high temperature secondary thermoluminescence glow peaks in α-Al2O3:C. Radiation Measurements, 2014, 66, 21-30.	1.4	28
14	Thermoluminescence characteristics of the main glow peak in $\hat{1}\pm$ -Al2O3:C exposed to low environmental-like radiation doses. Journal of Luminescence, 2013, 139, 143-148.	3.1	26
15	Phototransferred thermoluminescence of α-Al 2 O 3 :C: Experimental results and empirical models. Radiation Measurements, 2017, 105, 7-16.	1.4	26
16	Spectral and kinetic analysis of thermoluminescence from manganiferous carbonatite. Journal of Luminescence, 2014, 145, 180-187.	3.1	25
17	On the sensitivity of thermally and optically stimulated luminescence of α-Al 2 O 3 :C and α-Al 2 O 3 :C,Mg. Radiation Measurements, 2017, 99, 18-24.	1.4	23
18	Temperature dependence of luminescence time-resolved spectra from quartz. Radiation Measurements, 2000, 32, 627-632.	1.4	20

Μακαικό Снітнамво

#	Article	IF	CITATIONS
19	On luminescence lifetimes in quartz. Radiation Measurements, 2000, 32, 621-626.	1.4	20
20	Time-resolved luminescence from quartz: An overview of contemporary developments and applications. Physica B: Condensed Matter, 2016, 481, 8-18.	2.7	20
21	The influence of annealing and partial bleaching on luminescence lifetimes in quartz. Radiation Measurements, 2003, 37, 467-472.	1.4	19
22	Anomalous behaviour of thermoluminescence from quartz: A case of glow peaks from a Nigerian quartz. Radiation Measurements, 2006, 41, 549-553.	1.4	19
23	Thermoluminescence of monoclinic ZrO2: Kinetic analysis and dosimetric features. Journal of Luminescence, 2020, 218, 116864.	3.1	19
24	Low temperature luminescence of transition metal-doped beryls. Journal of African Earth Sciences, 1995, 20, 53-60.	2.0	18
25	Luminescence lifetime components in quartz: Influence of irradiation and annealing. Radiation Measurements, 2009, 44, 453-457.	1.4	18
26	A method for kinetic analysis and study of thermal quenching in thermoluminescence based on use of the area under an isothermal decay-curve. Journal of Luminescence, 2014, 151, 235-243.	3.1	18
27	Thermoluminescence of calcium phosphate co-doped with gadolinium and praseodymium. Radiation Measurements, 2015, 77, 26-33.	1.4	18
28	Phototransferred thermoluminescence of synthetic quartz: Analysis of illumination-time response curves. Journal of Luminescence, 2018, 198, 146-154.	3.1	18
29	Temperature dependence of persistent luminescence in CaAl2O4:Eu2+,Nd3+ related to beta irradiation and optical excitation. Journal of Luminescence, 2019, 206, 27-32.	3.1	18
30	Principal and secondary luminescence lifetime components in annealed natural quartz. Radiation Measurements, 2008, 43, 1-4.	1.4	17
31	Analytical expressions for time-resolved optically stimulated luminescence experiments in quartz. Journal of Luminescence, 2011, 131, 1827-1835.	3.1	17
32	The effect of annealing and beta irradiation on thermoluminescence spectra of α-Al2O3:C,Mg. Journal of Luminescence, 2018, 196, 195-200.	3.1	17
33	Experimental and modelling study of pulsed optically stimulated luminescence in quartz, marble and beta irradiated salt. Journal Physics D: Applied Physics, 2009, 42, 055407.	2.8	16
34	Temperature-dependence of time-resolved optically stimulated luminescence and composition heterogeneity of synthetic α-Al2O3:C. Journal of Luminescence, 2017, 182, 252-262.	3.1	16
35	A COMPARATIVE STUDY OF THE DOSIMETRIC FEATURES OF α-Al2O3:C,Mg AND α-Al2O3:C. Radiation Protection Dosimetry, 2017, 177, 261-271.	0.8	16
36	Phototransferred thermoluminescence from natural quartz annealed at 1000â€Â°C: Analysis of time-dependent evolution of intensity and competition effects. Journal of Luminescence, 2019, 216, 116730.	3.1	16

Макаіко Снітнамво

#	Article	IF	CITATIONS
37	On the correlation between annealing and variabilities in pulsed-luminescence from quartz. Radiation Measurements, 2006, 41, 862-865.	1.4	15
38	On isothermal heating as a method of separating closely collocated thermoluminescence peaks for kinetic analysis. Journal of Luminescence, 2014, 155, 70-78.	3.1	14
39	Thermally-assisted optically stimulated luminescence from deep electron traps in α-Al 2 O 3 :C,Mg. Nuclear Instruments & Methods in Physics Research B, 2017, 403, 28-32.	1.4	14
40	Phototransferred thermoluminescence of annealed synthetic quartz: Analysis of illumination-time profiles, kinetics and competition effects. Radiation Measurements, 2020, 131, 106236.	1.4	14
41	Positron and luminescence lifetimes in annealed synthetic quartz. Radiation Measurements, 2011, 46, 310-318.	1.4	13
42	A time-correlated photon counting system for measurement of pulsed optically stimulated luminescence. Journal of Luminescence, 2011, 131, 92-98.	3.1	12
43	Kinetics and dosimetric features of secondary thermoluminescence in carbon-doped aluminium oxide. Physica B: Condensed Matter, 2014, 439, 165-168.	2.7	12
44	Thermoluminescence of K-Mg-Al-Zn fluorophosphate glass. Optical Materials, 2017, 64, 302-309.	3.6	12
45	Thermoluminescence of the persistent-luminescence phosphor, BaAl2O4; A stuffed tridymite. Radiation Measurements, 2018, 120, 73-77.	1.4	12
46	Thermal assistance in the optically stimulated luminescence of superluminous Sr4Al14O25: Eu2+,Dy3+. Physica B: Condensed Matter, 2021, 603, 412722.	2.7	12
47	On luminescence stimulated from deep traps using thermally-assisted time-resolved optical stimulation in α-Al2O3:C. Radiation Measurements, 2016, 90, 109-112.	1.4	11
48	Phototransferred thermoluminescence in α-Al 2 O 3 :C,Mg under 470 nm blue light stimulation. Journal of Luminescence, 2017, 188, 371-377.	3.1	11
49	Thermoluminescence of the main peak in SrAl2O4:Eu2+, Dy3+: Spectral and kinetics features of secondary emission detected in the ultra-violet region. Radiation Measurements, 2017, 96, 29-41.	1.4	11
50	Thermoluminescence and infrared light stimulated luminescence of limestone (CaCO3) and its dosimetric features. Applied Radiation and Isotopes, 2019, 154, 108888.	1.5	11
51	A combined study of the thermoluminescence and electron paramagnetic resonance of point defects in ZrO2:Er3+. Radiation Physics and Chemistry, 2020, 172, 108767.	2.8	11
52	Time-resolved luminescence from annealed synthetic quartz under 525nm pulsed green light stimulation. Radiation Measurements, 2004, 38, 553-555.	1.4	10
53	Time resolved luminescence of quartz from Nigeria. Optical Materials, 2007, 29, 1844-1851.	3.6	10
54	Time-resolved Luminescence from Annealed Quartz. Radiation Protection Dosimetry, 2002, 100, 273-276.	0.8	9

Μακαικό Снітнамво

#	Article	IF	CITATIONS
55	Thermoluminescence of annealed synthetic quartz: The influence of annealing on kinetic parameters and thermal quenching. Radiation Measurements, 2018, 120, 47-52.	1.4	9
56	The influence of dopants on thermoluminescence of Sr2MgSi2O7. Journal of Luminescence, 2019, 208, 104-107.	3.1	9
57	Structural, compositional and thermoluminescence properties of microcline (KAlSi3O8). Journal of Luminescence, 2020, 224, 117320.	3.1	9
58	Thermoluminescence of α-Al2O3:C,Mg annealed at 1200â€ [−] °C. Nuclear Instruments & Methods in Physics Research B, 2018, 422, 78-84.	1.4	8
59	Radioluminescence of annealed synthetic quartz. Radiation Measurements, 2017, 106, 35-39.	1.4	7
60	Features of an annealing-induced thermoluminescence peak in α-Al 2 O 3 :C,Mg. Optical Materials, 2017, 70, 158-164.	3.6	7
61	F- and F+-band radioluminescence and the influence of annealing on its emission spectra in Al2O3:C,Mg. Radiation Measurements, 2020, 134, 106306.	1.4	7
62	Phototransferred thermoluminescence of tanzanite: A matrix-based analysis of time-response profiles and competition effects. Journal of Luminescence, 2021, 234, 117969.	3.1	7
63	Phototransferred thermoluminescence of BeO: Time-response profiles and mechanisms. Journal of Applied Physics, 2021, 130, 195101.	2.5	7
64	Dosimetric features and kinetic analysis of thermoluminescence from ultra-high molecular weight polyethylene. Journal Physics D: Applied Physics, 2012, 45, 345301.	2.8	6
65	General features and kinetic analysis of thermoluminescence from annealed natural quartz. Journal of Luminescence, 2018, 197, 406-411.	3.1	6
66	Characteristics of the thermoluminescence of Sm3+-doped P2O5-K2O-MgO-Al2O3-ZnF2 glass. Radiation Measurements, 2018, 120, 83-88.	1.4	6
67	Phototransferred thermoluminescence and thermally-assisted optically stimulated luminescence dosimetry using α-Al2O3:C,Mg annealed at 1200†°C. Journal of Luminescence, 2019, 205, 1-6.	3.1	6
68	Thermoluminescence properties of potassium fluoride. Nuclear Instruments & Methods in Physics Research B, 2020, 482, 53-57.	1.4	6
69	Analysis of illumination-time-dependent profiles of phototransferred thermoluminescence of Al2O3:C,Mg. Journal of Luminescence, 2021, 230, 117721.	3.1	6
70	Accuracy of the activation energy calculated from a thermoluminescence glow-peak using a method that uses three points on the peak. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 355-361.	0.8	5
71	Influence of nitrogen implantation on thermoluminescence of synthetic quartz. Radiation Effects and Defects in Solids, 2014, 169, 919-930.	1.2	5
72	Thermoluminescence of kunzite: A study of kinetic processes and dosimetry characteristics. Nuclear Instruments & Methods in Physics Research B, 2016, 373, 44-51.	1.4	5

Макаіко Снітнамво

#	Article	IF	CITATIONS
73	Dose response and kinetic analysis of thermoluminescence of Li–Zn fluoroborate glass. Radiation Effects and Defects in Solids, 2017, 172, 323-336.	1.2	5
74	The effect of pre-dose on thermally and optically stimulated luminescence from α-Al2O3:C,Mg and α-Al2O3:C. Applied Radiation and Isotopes, 2018, 140, 69-75.	1.5	5
75	Two-point method for kinetic analysis of a thermoluminescence glow peak. Radiation Effects and Defects in Solids, 2006, 161, 289-296.	1.2	4
76	Relative features of the principal and secondary luminescence lifetimes in quartz. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 914-917.	0.8	4
77	The dependence of luminescence lifetimes on additive irradiation in natural sedimentary quartz: sands from Santa Elina, Brazil. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 630-633.	0.8	4
78	On the dose-dependence of luminescence lifetimes in natural quartz. Radiation Effects and Defects in Solids, 2008, 163, 945-953.	1.2	4
79	Luminescence lifetimes in natural quartz annealed beyond its second phase inversion temperature. Radiation Measurements, 2015, 81, 198-204.	1.4	4
80	Kinetic analysis and general features of thermoluminescence of B2O3-Li2O-ZnF2 glass. Radiation Measurements, 2017, 100, 1-8.	1.4	4
81	Influence of annealing on thermoluminescence of natural quartz: Kinetic analysis and experimental study of apparent inverse thermal quenching. Radiation Measurements, 2018, 120, 53-58.	1.4	4
82	A study of the kinetics of a high temperature thermoluminescence peak in annealed natural quartz. Journal of Luminescence, 2018, 204, 603-608.	3.1	4
83	Dosimetric features, kinetics and mechanisms of thermoluminescence of tanzanite. Physica B: Condensed Matter, 2020, 598, 412435.	2.7	4
84	Analysis of thermoluminescence and phosphorescence related to phototransfer in natural quartz. Journal of Luminescence, 2021, 238, 118217.	3.1	4
85	Phototransferred thermoluminescence characteristics of microcline (KAlSi3O8) under 470Ânm blue- and 870Ânm infrared-light illumination. Applied Radiation and Isotopes, 2022, 181, 110070.	1.5	4
86	Towards models for analysis of time-resolved luminescence spectra from quartz. Applied Radiation and Isotopes, 2005, 62, 941-942.	1.5	3
87	Orthopaedic grade ultra–high molecular weight polyethylene: some features of the main thermoluminescence glow curve. Radiation Protection Dosimetry, 2006, 119, 157-160.	0.8	3
88	Influence of argon-implantation on conventional and phototransferred thermoluminescence of synthetic quartz. Radiation Effects and Defects in Solids, 2016, 171, 328-339.	1.2	3
89	Temperature dependence of optically stimulated luminescence of α-Al 2 O 3 :C,Mg. Nuclear Instruments & Methods in Physics Research B, 2017, 410, 16-20.	1.4	3
90	Spectral study of radioluminescence in carbon-doped aluminium oxide. Radiation Measurements, 2018, 120, 89-95.	1.4	3

Макаіко Снітнамво

#	Article	IF	CITATIONS
91	Thermally and optically stimulated luminescence of natural red and blue corundum (Al2O3). Journal of Luminescence, 2019, 205, 417-422.	3.1	3
92	Blue- and infrared-light stimulated luminescence of microcline and the effect of optical bleaching on its thermoluminescence. Journal of Luminescence, 2021, 229, 117712.	3.1	3
93	The kinetic parameters of the main thermoluminescence glow peak of Al2O3:C,Mg: A critical evaluation of different analytical methods. Journal of Luminescence, 2022, 247, 118848.	3.1	3
94	Temperature dependence of luminescence lifetimes in quartz under pulsed blue light stimulation. Radiation Effects and Defects in Solids, 2001, 154, 355-359.	1.2	2
95	Some properties of luminescence lifetimes from quartz stimulated by blue light. Radiation Effects and Defects in Solids, 2001, 154, 361-365.	1.2	2
96	Phosphorescence of orthopaedic– grade ultra high molecular weight polyethylene. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 871-874.	0.8	2
97	Optically stimulated luminescence of ultra-high molecular weight polyethylene: A study of dosimetric features. Radiation Measurements, 2018, 120, 78-82.	1.4	2
98	Thermoluminescence and fluorescence studies of argon-implanted aluminium oxide. Radiation Effects and Defects in Solids, 2019, 174, 708-720.	1.2	2
99	Light-induced inter-electron-trap charge movement in annealed Al2O3:C,Mg. Physica B: Condensed Matter, 2022, 624, 413438.	2.7	2
100	Processes related to phototransfer under blue- and green-light illumination in annealed Al ₂ O ₃ :C,Mg. Journal of Applied Physics, 2022, 131, 245101.	2.5	2
101	On extending the applicability of the initial rise method for thermoluminescence glow peak analysis. Radiation Effects and Defects in Solids, 2007, 162, 803-807.	1.2	1
102	Influence of nitrogen implantation on thermoluminescence of synthetic quartz. Radiation Effects and Defects in Solids, 2015, 170, 18-29.	1.2	1
103	Factors influencing the shape of CW-OSL signal obtained by stimulation of very deep traps in carbon-doped aluminium oxide: An experimental study. Journal of Luminescence, 2017, 192, 436-442.	3.1	1
104	Concerning a hole trap in α-Al ₂ O ₃ :C,Mg. Journal of Applied Physics, 2022, 132, 015103.	2.5	1
105	The influence of optical bleaching on lifetimes and luminescence intensity in the slow component of optically stimulated luminescence of natural quartz from Nigeria. Journal of Luminescence, 2008, 128, 1561-1569.	3.1	0
106	Characteristics of luminescence lifetimes in natural quartz from Brazil and South Korea. Radiation Effects and Defects in Solids, 2013, 168, 460-467.	1.2	0
107	Optically stimulated luminescence and spectral emission features of radioluminescence and thermoluminescence of natural kunzite. Radiation Measurements, 2020, 138, 106457.	1.4	0
108	Optically stimulated luminescence of cowrie shells. Applied Radiation and Isotopes, 2021, 167, 109463.	1.5	0