Yongxi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7046587/publications.pdf Version: 2024-02-01

Υσνοχιίι

#	Article	IF	CITATIONS
1	High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nature Energy, 2018, 3, 422-427.	19.8	462
2	High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells. Journal of the American Chemical Society, 2017, 139, 17114-17119.	6.6	384
3	A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy and Environmental Science, 2017, 10, 1610-1620.	15.6	272
4	Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon, 2011, 49, 1900-1905.	5.4	255
5	Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 5890-5897.	5.2	219
6	Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%. Energy and Environmental Science, 2016, 9, 3429-3435.	15.6	170
7	Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nature Communications, 2021, 12, 5419.	5.8	128
8	A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset. Nano Energy, 2016, 27, 430-438.	8.2	125
9	A Versatile Fluoroâ€Containing Lowâ€Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells. Advanced Functional Materials, 2013, 23, 5084-5090.	7.8	110
10	Color-neutral, semitransparent organic photovoltaics for power window applications. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21147-21154.	3.3	109
11	Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture. Advanced Materials, 2019, 31, e1903173.	11.1	105
12	Elevenâ€Membered Fusedâ€Ring Low Bandâ€Gap Polymer with Enhanced Charge Carrier Mobility and Photovoltaic Performance. Advanced Functional Materials, 2014, 24, 3631-3638.	7.8	99
13	Side-Chain Effect on Cyclopentadithiophene/Fluorobenzothiadiazole-Based Low Band Gap Polymers and Their Applications for Polymer Solar Cells. Macromolecules, 2013, 46, 5497-5503.	2.2	94
14	Polyfluorene-Based Pushâ^'Pull Type Functional Materials for Write-Once-Read-Many-Times Memory Devices. Chemistry of Materials, 2010, 22, 4455-4461.	3.2	89
15	Poly(<i>N</i> â€vinylcarbazole) chemically modified graphene oxide. Journal of Polymer Science Part A, 2010, 48, 2642-2649.	2.5	88
16	Indacenodithiophene: a promising building block for high performance polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 10798-10814.	5.2	85
17	Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy. Advanced Energy Materials, 2014, 4, 1301645.	10.2	71
18	Energy Loss in Organic Photovoltaics: Nonfullerene Versus Fullerene Acceptors. Physical Review Applied, 2019, 11, .	1.5	68

Υονσχι Li

#	Article	IF	CITATIONS
19	Nearâ€Infrared Ternary Tandem Solar Cells. Advanced Materials, 2018, 30, e1804416.	11.1	65
20	Isomeric Effects of Solution Processed Ladderâ€Type Nonâ€Fullerene Electron Acceptors. Solar Rrl, 2017, 1, 1700107.	3.1	44
21	Understanding molecular fragmentation in blue phosphorescent organic light-emitting devices. Organic Electronics, 2019, 64, 15-21.	1.4	42
22	Cost estimates of production scale semitransparent organic photovoltaic modules for building integrated photovoltaics. Sustainable Energy and Fuels, 2020, 4, 5765-5772.	2.5	42
23	The effect of thieno[3,2-b]thiophene on the absorption, charge mobility and photovoltaic performance of diketopyrrolopyrrole-based low bandgap conjugated polymers. Journal of Materials Chemistry C, 2013, 1, 7526.	2.7	38
24	Graphene-based functional materials for organic solar cells [Invited]. Optical Materials Express, 2012, 2, 814.	1.6	36
25	Fluoro-benzoselenadiazole-based low band gap polymers for high efficiency organic solar cells. Polymer Chemistry, 2014, 5, 330-334.	1.9	28
26	15.9% organic tandem solar cell with extended near-infrared absorption. Applied Physics Letters, 2020, 116, .	1.5	23
27	Vacuum-Deposited Biternary Organic Photovoltaics. Journal of the American Chemical Society, 2019, 141, 18204-18210.	6.6	19
28	Soluble reduced graphene oxide functionalized with conjugated polymer for heterojunction solar cells. Journal of Polymer Science Part A, 2012, 50, 1663-1671.	2.5	18
29	A decacyclic indacenodithiophene-based non-fullerene electron acceptor with meta-alkyl-phenyl substitutions for polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 4063-4071.	5.2	17
30	A highly soluble polyhedral oligomeric silsesquioxane end-capped perylenediimide dye. New Journal of Chemistry, 2010, 34, 1120.	1.4	16
31	Ternary non-fullerene polymer solar cells with a high crystallinity n-type organic semiconductor as the second acceptor. Journal of Materials Chemistry A, 2018, 6, 24814-24822.	5.2	16
32	Short-axis substitution approach on ladder-type benzodithiophene-based electron acceptor toward highly efficient organic solar cells. Science China Chemistry, 2018, 61, 1405-1412.	4.2	16
33	Selfâ€Assembled Ï€â€Extended Condensed Benzothiophene Nanoribbons for Fieldâ€Effect Transistors. Chemistry - A European Journal, 2013, 19, 9771-9774.	1.7	15
34	An Imideâ€Based Pentacyclic Building Block for nâ€īype Organic Semiconductors. Chemistry - A European Journal, 2017, 23, 14723-14727.	1.7	12
35	Aperiodic optical coatings for neutral-color semi-transparent organic photovoltaics. Applied Physics Letters, 2021, 118,	1.5	12
36	Mechanistic Study of Charge Separation in a Nonfullerene Organic Donor–Acceptor Blend Using Multispectral Multidimensional Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 3410-3416.	2.1	11

Yongxi Li

#	ARTICLE	IF	CITATIONS
37	Ternary polymer solar cells based-on two polymer donors with similar HOMO levels and an organic acceptor with absorption extending to 850†nm. Organic Electronics, 2018, 62, 89-94.	1.4	10
38	Characterizing and Improving the Thermal Stability of Organic Photovoltaics Based on Halogen-Rich Non-Fullerene Acceptors. ACS Applied Materials & Interfaces, 2022, 14, 5692-5698.	4.0	10
39	A New Cyanofluorene–Triphenylamine Copolymer: Synthesis and Photoinduced Intramolecular Electron Transfer Processes. Chemistry - A European Journal, 2009, 15, 10818-10824.	1.7	9
40	Highly efficient and thickness-tolerable bulk heterojunction polymer solar cells based on P3HT donor and a low-bandgap non-fullerene acceptor. Journal of Power Sources, 2017, 364, 426-431.	4.0	9
41	Photogeneration and the bulk quantum efficiency of organic photovoltaics. Energy and Environmental Science, 2021, 14, 1584-1593.	15.6	9
42	Multilevel peel-off patterning of a prototype semitransparent organic photovoltaic module. Joule, 2022, 6, 1581-1589.	11.7	8
43	Carbazole-modified blue light-emitting copolymers with the backbones integrated by diphenyloxadiazole, fluorene, and triphenylamine. European Polymer Journal, 2012, 48, 416-424.	2.6	5
44	A 3D nonfullerene electron acceptor with a 9,9′-bicarbazole backbone for high-efficiency organic solar cells. Organic Electronics, 2020, 84, 105784.	1.4	5
45	Synthesis and photovoltaic properties of conjugated copolymers containing cyclopentadithiophene and two different electron-deficient moieties in the polymer backbone. Journal of Polymer Research, 2015, 22, 1.	1.2	4
46	Relationship between charge transfer state electroluminescence and the degradation of organic photovoltaics. Applied Physics Letters, 2021, 118, .	1.5	4
47	High Efficiency Semi-Transparent Organic Photovoltaics. , 2019, , .		3