
Zhongsheng You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7046542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonsense-Mediated RNA Decay Is a Unique Vulnerability of Cancer Cells Harboring <i>SF3B1</i> or <i>U2AF1</i> Mutations. Cancer Research, 2021, 81, 4499-4513.	0.9	28
2	Phospho-Ser784-VCP Is Required for DNA Damage Response and Is Associated with Poor Prognosis of Chemotherapy-Treated Breast Cancer. Cell Reports, 2020, 31, 107745.	6.4	17
3	Ca2+-Stimulated AMPK-Dependent Phosphorylation of Exo1 Protects Stressed Replication Forks from Aberrant Resection. Molecular Cell, 2019, 74, 1123-1137.e6.	9.7	52
4	Repair of protein-linked DNA double strand breaks: Using the adenovirus genome as a model substrate in cell-based assays. DNA Repair, 2019, 74, 80-90.	2.8	6
5	Studying Nonsense-Mediated mRNA Decay in Mammalian Cells Using a Multicolored Bioluminescence-Based Reporter System. Methods in Molecular Biology, 2018, 1720, 213-224.	0.9	6
6	Compound C inhibits nonsense-mediated RNA decay independently of AMPK. PLoS ONE, 2018, 13, e0204978.	2.5	5
7	MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nature Communications, 2017, 8, 860.	12.8	311
8	p38 MAPK inhibits nonsense-mediated RNA decay in response to persistent DNA damage in noncycling cells. Journal of Biological Chemistry, 2017, 292, 15266-15276.	3.4	9
9	Control of gene expression through the nonsense-mediated RNA decay pathway. Cell and Bioscience, 2017, 7, 26.	4.8	147
10	Dna2 initiates resection at clean DNA double-strand breaks. Nucleic Acids Research, 2017, 45, 11766-11781.	14.5	21
11	USP51 deubiquitylates H2AK13,15ub and regulates DNA damage response. Genes and Development, 2016, 30, 946-959.	5.9	72
12	Sharpening the ends for repair: mechanisms and regulation of DNA resection. Acta Biochimica Et Biophysica Sinica, 2016, 48, 647-657.	2.0	9
13	A cell cycle-dependent BRCA1–UHRF1 cascade regulates DNA double-strand break repair pathway choice. Nature Communications, 2016, 7, 10201.	12.8	95
14	Poly(ADP-ribose)-binding promotes Exo1 damage recruitment and suppresses its nuclease activities. DNA Repair, 2015, 35, 106-115.	2.8	19
15	14-3-3 Proteins Restrain the Exo1 Nuclease to Prevent Overresection. Journal of Biological Chemistry, 2015, 290, 12300-12312.	3.4	23
16	Intracellular calcium regulates nonsense-mediated mRNA decay. Nature Medicine, 2014, 20, 961-966.	30.7	65
17	CHFR is important for the first wave of ubiquitination at DNA damage sites. Nucleic Acids Research, 2013, 41, 1698-1710.	14.5	74
18	PCNA promotes processive DNA end resection by Exo1. Nucleic Acids Research, 2013, 41, 9325-9338.	14.5	67

ZHONGSHENG YOU

#	Article	IF	CITATIONS
19	Loss of ATM kinase activity leads to embryonic lethality in mice. Journal of Cell Biology, 2012, 198, 295-304.	5.2	94
20	MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature, 2011, 470, 124-128.	27.8	361
21	DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends in Cell Biology, 2010, 20, 402-409.	7.9	152
22	The F Box Protein Fbx6 Regulates Chk1 Stability and Cellular Sensitivity to Replication Stress. Molecular Cell, 2009, 35, 442-453.	9.7	170
23	CtIP Links DNA Double-Strand Break Sensing to Resection. Molecular Cell, 2009, 36, 954-969.	9.7	197
24	Rapid activation of ATM on DNA flanking double-strand breaks. Nature Cell Biology, 2007, 9, 1311-1318.	10.3	91
25	Monitoring ATM kinase activity in living cells. DNA Repair, 2007, 6, 1277-1284.	2.8	38
26	Protein Phosphatase 2A Antagonizes ATM and ATR in a Cdk2- and Cdc7-Independent DNA Damage Checkpoint. Molecular and Cellular Biology, 2006, 26, 1997-2011.	2.3	64
27	ATM Activation and Its Recruitment to Damaged DNA Require Binding to the C Terminus of Nbs1. Molecular and Cellular Biology, 2005, 25, 5363-5379.	2.3	373
28	Xic1 degradation in Xenopus egg extracts is coupled to initiation of DNA replication. Genes and Development, 2002, 16, 1182-1194.	5.9	35
29	The Role of Single-stranded DNA and Polymerase α in Establishing the ATR, Hus1 DNA Replication Checkpoint. Journal of Biological Chemistry, 2002, 277, 27088-27093.	3.4	102
30	Xenopus ATR is a replication-dependent chromatin-binding protein required for the DNA replication checkbooint. Current Biology, 2000, 10, 1565-1573	3.9	186

checkpoint. Current Biology, 2000, 10, 1565-1573.