
Chao Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7046103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of recent theories and experiments for improving high-power microwave window breakdown thresholds. Physics of Plasmas, 2011, 18, .	1.9	130
2	The effect of grooved surface on dielectric multipactor. Journal of Applied Physics, 2009, 105, .	2.5	73
3	Enhanced window breakdown dynamics in a nanosecond microwave tail pulse. Applied Physics Letters, 2014, 104, .	3.3	68
4	Suppression of high-power microwave dielectric multipactor by resonant magnetic field. Applied Physics Letters, 2010, 96, .	3.3	66
5	Experimental Demonstration of a Tunable Microwave Undulator. Physical Review Letters, 2014, 112, 164802.	7.8	63
6	Surface modifications of polystyrene and their stability: A comparison of DBD plasma deposition and direct fluorination. Applied Surface Science, 2018, 459, 300-308.	6.1	59
7	Suppressing high-power microwave dielectric multipactor by the sawtooth surface. Physics of Plasmas, 2009, 16, .	1.9	57
8	The influence of desorption gas to high power microwave window multipactor. Physics of Plasmas, 2008, 15, .	1.9	55
9	Electric Fano resonance-based terahertz metasensors. Nanoscale, 2021, 13, 18467-18472.	5.6	51
10	Carvacrol Loaded Solid Lipid Nanoparticles of Propylene Glycol Monopalmitate and Glyceryl Monostearate: Preparation, Characterization, and Synergistic Antimicrobial Activity. Nanomaterials, 2019, 9, 1162.	4.1	44
11	High-Gain Thompson-Scattering X-Ray Free-Electron Laser by Time-Synchronic Laterally Tilted Optical Wave. Physical Review Letters, 2013, 110, 064802.	7.8	38
12	Studies of a Leaky-Wave Phased Array Antenna for High-Power Microwave Applications. IEEE Transactions on Plasma Science, 2016, 44, 2366-2375.	1.3	37
13	Compact four-way microwave power combiner for high power applications. Journal of Applied Physics, 2014, 115, .	2.5	33
14	Experimental verification of improving high-power microwave window breakdown thresholds by resonant magnetic field. Applied Physics Letters, 2010, 97, .	3.3	32
15	The effects of magnetic field on single-surface resonant multipactor. Journal of Applied Physics, 2011, 110, .	2.5	32
16	A New Compact High-Power Microwave Phase Shifter. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1875-1882.	4.6	30
17	DESIGN AND EXPERIMENTS OF THE GW HIGH-POWER MICROWAVE FEED HORN. Progress in Electromagnetics Research, 2010, 101, 157-171.	4.4	27
18	Field distribution, HPM multipactor, and plasma discharge on the periodic triangular surface. Laser and Particle Beams, 2010, 28, 185-193.	1.0	27

CHAO CHANG

#	Article	IF	CITATIONS
19	Protective effects of mannan/β-glucans from yeast cell wall on the deoxyniyalenol-induced oxidative stress and autophagy in IPEC-J2 cells. International Journal of Biological Macromolecules, 2019, 135, 619-629.	7.5	27
20	Chemerin15-Ameliorated Cardiac Ischemia-Reperfusion Injury Is Associated with the Induction of Alternatively Activated Macrophages. Mediators of Inflammation, 2015, 2015, 1-9.	3.0	26
21	Sharp improvement of flashover strength from composite micro-textured surfaces. Journal of Applied Physics, 2017, 122, .	2.5	26
22	THEORY AND EXPERIMENT OF A COMPACT WAVEGUIDE DUAL CIRCULAR POLARIZER. Progress in Electromagnetics Research, 2012, 131, 211-225.	4.4	25
23	Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field. Applied Physics Letters, 2013, 103, .	3.3	24
24	High-brightness X-ray free-electron laser with an optical undulator by pulse shaping. Optics Express, 2013, 21, 32013.	3.4	23
25	Single and repetitive short-pulse high-power microwave window breakdown. Physics of Plasmas, 2010, 17, .	1.9	21
26	Ultrafast high-power microwave window breakdown: Nonlinear and postpulse effects. Physical Review E, 2014, 90, 063107.	2.1	21
27	A compact two-way high-power microwave combiner. Review of Scientific Instruments, 2014, 85, 084704.	1.3	20
28	The influence of space charge shielding on dielectric multipactor. Physics of Plasmas, 2009, 16, .	1.9	19
29	Improving the microwave window breakdown threshold by using a fluorinated, periodically patterned surface. Journal of Applied Physics, 2013, 114, 163304.	2.5	18
30	NOVEL COMPACT WAVEGUIDE DUAL CIRCULAR POLARIZER. Progress in Electromagnetics Research, 2013, 136, 1-16.	4.4	18
31	Suppressing double-metal-surface resonant multipactor by three dimensional wavy surface. Physics of Plasmas, 2017, 24, .	1.9	18
32	Nanosecond discharge at the interfaces of flat and periodic ripple surfaces of dielectric window with air at varied pressure. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 375-381.	2.9	17
33	The influence of ions and the induced secondary emission on the nanosecond high-gradient microwave breakdown at metal surface. Physics of Plasmas, 2015, 22, 063511.	1.9	15
34	Circulating Omentin-1 Levels Are Decreased in Dilated Cardiomyopathy Patients with Overt Heart Failure. Disease Markers, 2016, 2016, 1-7.	1.3	15
35	Repression of deoxynivalenol-triggered cytotoxicity and apoptosis by mannan/β-glucans from yeast cell wall: Involvement of autophagy and PI3K-AKT-mTOR signaling pathway. International Journal of Biological Macromolecules, 2020, 164, 1413-1421.	7.5	15
36	Improved model for window breakdown at low pressure. Physics of Plasmas, 2009, 16, .	1.9	14

CHAO CHANG

#	Article	IF	CITATIONS
37	An Analytical Model of One-Sided Multipactor on a Dielectric of a Metal Surface for Spacecraft Application. IEEE Transactions on Electron Devices, 2019, 66, 4921-4927.	3.0	13
38	Graphene-Enhanced Quartz Tuning Fork for Laser-Induced Thermoelastic Spectroscopy. IEEE Sensors Journal, 2021, 21, 9819-9824.	4.7	13
39	The effect of periodic wavy profile on suppressing window multipactor under arbitrary electromagnetic mode. Applied Physics Letters, 2015, 106, .	3.3	12
40	Electron dynamics and transverse-kick elimination in a high-field short-period helical microwave undulator. Applied Physics Letters, 2012, 101, .	3.3	11
41	Demonstration of Halbach-like magnets for improving microwave window power capacity. Applied Physics Express, 2014, 7, 097301.	2.4	11
42	Experimental demonstration of improving resonant-multipactor threshold by three-dimensional wavy surface. Applied Physics Letters, 2017, 111, .	3.3	11
43	Multipactor Analysis in Circular Waveguides Excited by TM ₀₁ Mode. IEEE Transactions on Electron Devices, 2019, 66, 4943-4951.	3.0	11
44	Nanosecond Snapshots of High-Power Microwave Discharge in Waveguides. IEEE Transactions on Plasma Science, 2015, 43, 1887-1893.	1.3	10
45	Theory of Nanosecond High-Power Microwave Breakdown on the Atmosphere Side of the Dielectric Window. IEEE Transactions on Plasma Science, 2015, 43, 1670-1674.	1.3	9
46	Compact high-power microwave divider and combiner. Review of Scientific Instruments, 2016, 87, 024702.	1.3	9
47	Effects of pressure and incident field on visible light intensity from microwave nitrogen breakdown. Physics of Plasmas, 2018, 25, 022104.	1.9	8
48	Dynamic of microwave breakdown in the localized places of transmitting line driving by Cherenkov-type oscillator. Physics of Plasmas, 2018, 25, .	1.9	8
49	High-gain X-ray free electron laser by beat-wave terahertz undulator. Physics of Plasmas, 2013, 20, .	1.9	7
50	Diagnostic of ultrafast temporal plasma evolution in high-power microwave discharge. Journal of Applied Physics, 2017, 121, .	2.5	7
51	Mechanisms of high-gradient microwave breakdown on metal surfaces in high power microwave source. Physics of Plasmas, 2017, 24, .	1.9	7
52	Tracking multiple generation and suppression of secondary electrons on periodic triangular surface. Physics of Plasmas, 2013, 20, 123502.	1.9	6
53	Analysis of electron dynamics and two mechanisms in a coaxial magnetic wiggler. Physics of Plasmas, 2014, 21, 123119.	1.9	5
54	Space and time evolution of light emitted from microwave nitrogen breakdown. Plasma Sources Science and Technology, 2019, 28, 085006.	3.1	5

CHAO CHANG

#	Article	IF	CITATIONS
55	A high-power microwave circular polarizer and its application on phase shifter. Review of Scientific Instruments, 2016, 87, 044701.	1.3	3
56	Reduced Graphene Oxide/Polydimethylsiloxane as an Over-Coating Layer on Quartz Tuning Fork for Sensitive Light-Induced Thermoelastic Spectroscopy. IEEE Sensors Journal, 2022, 22, 10459-10464.	4.7	3
57	Comparison Between Air and SF6 Breakdown by Microwaves at High Pressure. IEEE Transactions on Plasma Science, 2018, 46, 2794-2799.	1.3	2
58	Low-Loss Flexible Polarization-Maintaining Hollow Waveguide for Linearly Polarized 100 GHz Radiation Transmission and Subwavelength Imaging. Journal of Lightwave Technology, 2022, 40, 6712-6718.	4.6	2
59	The effect of grooved surface on dielectric window multipactor. , 2009, , .		1
60	Temporal and spatial evolution of nanosecond microwave-driven plasma. Physics of Plasmas, 2018, 25, 060701.	1.9	1
61	A theoretical model for suppression effect of single-surface multipactor on dielectric by external DC magnetic field. AIP Advances, 2020, 10, .	1.3	1
62	Main factors influencing the effect of suppressing multipactor by periodic surface profiles and resonant magnetic field. , 2011, , .		0
63	Nanosecond high power microwave window breakdown diagnostic and its mechanism. , 2015, , .		0
64	Study of periodic surface profile on improving the window capacity at single and repetitive pulses. Physics of Plasmas, 2015, 22, 093502.	1.9	0
65	Design of a fast tunable polarized FEL based on a microwave undulator. , 2016, , .		0
66	Improved Surface Electrical Properties of Polystyrene in Vacuum by Plasma Modification. , 2018, , .		0
67	Guest Editorial Special Issue for Plenary, Invited, and Selected Papers From the 2018 Asia-Pacific Conference on Plasma and Terahertz Science. IEEE Transactions on Plasma Science, 2019, 47, 1885-1886.	1.3	0
68	Particle-in-cell simulation for frequency up-conversion of microwave to terahertz radiation by a relativistic hollow ionization front. AIP Advances, 2019, 9, .	1.3	0
69	Microwave frequency downshift in the time-varying collision plasma. Plasma Science and Technology, 2020, 22, 025501.	1.5	0