List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7046059/publications.pdf Version: 2024-02-01

314	18 510	16437 6 4	14197 128
papers	citations	h-index	g-index
322	322	322	13256
all docs	docs citations	times ranked	citing authors

REDND RECH

#	Article	IF	CITATIONS
1	Hybrid Perovskite Degradation from an Optical Perspective: A Spectroscopic Ellipsometry Study from the Deep Ultraviolet to the Middle Infrared. Advanced Optical Materials, 2022, 10, 2101553.	3.6	10
2	Highâ€Throughput Aging System for Parallel Maximum Power Point Tracking of Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	11
3	Field Effect Passivation in Perovskite Solar Cells by a LiF Interlayer. Advanced Energy Materials, 2022, 12, .	10.2	53
4	Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy and Environmental Science, 2021, 14, 4508-4522.	15.6	76
5	27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells. Solar Rrl, 2021, 5, 2100244.	3.1	59
6	Coâ€Evaporated Formamidinium Lead Iodide Based Perovskites with 1000 h Constant Stability for Fully Textured Monolithic Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 2021, 11, 2101460.	10.2	102
7	Revisiting the Determination of the Valence Band Maximum and Defect Formation in Halide Perovskites for Solar Cells: Insights from Highly Sensitive Near–UV Photoemission Spectroscopy. ACS Applied Materials & Interfaces, 2021, 13, 43540-43553.	4.0	20
8	Nano-emitting Heterostructures Violate Optical Reciprocity and Enable Efficient Photoluminescence in Halide-Segregated Methylammonium-Free Wide Bandgap Perovskites. ACS Energy Letters, 2021, 6, 419-428.	8.8	31
9	The Doping Mechanism of Halide Perovskite Unveiled by Alkaline Earth Metals. Journal of the American Chemical Society, 2020, 142, 2364-2374.	6.6	132
10	Tailored Nanostructures for Light Management in Silicon Heterojunction Solar Cells. Solar Rrl, 2020, 4, 2000484.	3.1	11
11	Co-Evaporated p-i-n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer. ACS Applied Materials & Interfaces, 2020, 12, 39261-39272.	4.0	79
12	Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370, 1300-1309.	6.0	1,120
13	Ion Migrationâ€Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000310.	10.2	103
14	On the Origin of the Ideality Factor in Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000502.	10.2	175
15	Toward High Solar Cell Efficiency with Low Material Usage: 15% Efficiency with 14 μm Polycrystalline Silicon on Glass. Solar Rrl, 2020, 4, 2000058.	3.1	12
16	Analysis of Surface Passivation and Laser Firing on Thin-Film Silicon Solar Cells Via Light-Beam Induced Current. IEEE Journal of Photovoltaics, 2020, 10, 1246-1253.	1.5	3
17	Proton Radiation Hardness of Perovskite Tandem Photovoltaics. Joule, 2020, 4, 1054-1069.	11.7	104
18	Interface Molecular Engineering for Laminated Monolithic Perovskite/Silicon Tandem Solar Cells with 80.4% Fill Factor. Advanced Functional Materials, 2019, 29, 1901476.	7.8	43

#	Article	IF	CITATIONS
19	On the Relation between the Openâ€Circuit Voltage and Quasiâ€Fermi Level Splitting in Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901631.	10.2	275
20	Laser firing in silicon heterojunction interdigitated back contact architecture for low contact resistance. Solar Energy Materials and Solar Cells, 2019, 203, 110201.	3.0	5
21	21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se ₂ Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces. ACS Energy Letters, 2019, 4, 583-590.	8.8	155
22	High open circuit voltages in pin-type perovskite solar cells through strontium addition. Sustainable Energy and Fuels, 2019, 3, 550-563.	2.5	57
23	Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustainable Energy and Fuels, 2019, 3, 1995-2005.	2.5	208
24	All-Thin-Film Tandem Cells Based on Liquid Phase Crystallized Silicon and Perovskites. IEEE Journal of Photovoltaics, 2019, 9, 621-628.	1.5	10
25	Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 9172-9181.	4.0	28
26	Analysis of Surface Passivation and Laser Firing via Light-Beam Induced Current Measurements. , 2019, ,		1
27	Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy and Environmental Science, 2019, 12, 3356-3369.	15.6	519
28	Impact of Dielectric Layers on Liquid-Phase Crystallized Silicon Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 30-37.	1.5	14
29	Progress in and potential of liquid phase crystallized silicon solar cells. Solar Energy, 2018, 175, 75-83.	2.9	12
30	Electronic structure of indium-tungsten-oxide alloys and their energy band alignment at the heterojunction to crystalline silicon. Applied Physics Letters, 2018, 112, .	1.5	6
31	Optical characterization and bandgap engineering of flat and wrinkle-textured FA0.83Cs0.17Pb(I1– <i>x</i> Br <i>x</i>)3 perovskite thin films. Journal of Applied Physics, 2018, 123, .	1.1	25
32	Liquid phase crystallized silicon – A holistic absorber quality assessment. Solar Energy Materials and Solar Cells, 2018, 181, 2-8.	3.0	4
33	Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%. Solar Energy Materials and Solar Cells, 2018, 174, 187-195.	3.0	43
34	Influence of the precursor layer composition and deposition processes on the electronic quality of liquid phase crystallized silicon absorbers. Progress in Photovoltaics: Research and Applications, 2018, 26, 524-532.	4.4	6
35	Observation of Pbl <inf>2</inf> Residuals after P2 Nanosecond Laser Ablation of Perovskite Absorber Layers. , 2018, ,		2
36	Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy and Environmental Science, 2018, 11, 3511-3523.	15.6	281

#	Article	IF	CITATIONS
37	Mitigating optical losses in crystalline silicon thin-film solar cells on glass. , 2018, , .		1
38	Honeycomb micro-textures for light trapping in multi-crystalline silicon thin-film solar cells. Optics Express, 2018, 26, A498.	1.7	13
39	Cs <i>_x</i> FA _{1â€"<i>x</i>} Pb(I _{1â€"<i>y</i>} Br <i>_y</i>) _{3 Perovskite Compositions: the Appearance of Wrinkled Morphology and its Impact on Solar Cell Performance. Journal of Physical Chemistry C, 2018, 122, 17123-17135.}	 1.5	42
40	Passivation of Liquidâ€Phase Crystallized Silicon With PECVDâ€&iN <i>_x</i> and PECVDâ€&iN <i>_x</i> /i>/SiO <i>_x</i> . Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800239.	0.8	1
41	Evidence of Pbl ₂ -Containing Debris Upon P2 Nanosecond Laser Patterning of Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1244-1251.	1.5	13
42	Crystalline silicon solar cells with tetracene interlayers: the path to silicon-singlet fission heterojunction devices. Materials Horizons, 2018, 5, 1065-1075.	6.4	92
43	Defect Dynamics in Proton Irradiated CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Advanced Electronic Materials, 2017, 3, 1600438.	2.6	96
44	Perovskite solar cells: On top of commercial photovoltaics. Nature Energy, 2017, 2, .	19.8	103
45	Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells. ACS Photonics, 2017, 4, 1232-1239.	3.2	103
46	It Takes Two to Tango—Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 17245-17255.	4.0	107
47	Nondestructive Probing of Perovskite Silicon Tandem Solar Cells Using Multiwavelength Photoluminescence Mapping. IEEE Journal of Photovoltaics, 2017, 7, 1081-1086.	1.5	24
48	Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer. Scientific Reports, 2017, 7, 873.	1.6	32
49	Determination of the complex refractive index and optical bandgap of CH3NH3PbI3 thin films. Journal of Applied Physics, 2017, 121, .	1.1	38
50	Optimized Metallization for Interdigitated Back Contact Silicon Heterojunction Solar Cells. Solar Rrl, 2017, 1, 1700021.	3.1	12
51	Interface Engineering for Liquidâ€Phase Crystallizedâ€ S ilicon Solar Cells on Glass. Solar Rrl, 2017, 1, 1700015.	3.1	10
52	Nanocrystalline silicon emitter optimization for Si-HJ solar cells: Substrate selectivity and CO ₂ plasma treatment effect. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1532958.	0.8	36
53	Passivation at the interface between liquidâ€phase crystallized silicon and silicon oxynitride in thin film solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 515-524.	4.4	8
54	ITO-free metallization for interdigitated back contact silicon heterojunction solar cells. Energy Procedia, 2017, 124, 379-383.	1.8	4

#	Article	IF	CITATIONS
55	Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass. Scientific Reports, 2017, 7, 2658.	1.6	25
56	Correlation between Electronic Defect States Distribution and Device Performance of Perovskite Solar Cells. Advanced Science, 2017, 4, 1700183.	5.6	117
57	Influence of the Frontside Charge Inversion Layer on the Minority Carrier Collection in Backside Contacted Liquid Phase Crystallized Silicon on Glass Solar Cells. Solar Rrl, 2017, 1, 1700100.	3.1	1
58	Periodic and Random Substrate Textures for Liquid-Phase Crystallized Silicon Thin-Film Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 85-90.	1.5	8
59	Analysis of Local Minority Carrier Diffusion Lengths in Liquid-Phase Crystallized Silicon Thin-Film Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 32-36.	1.5	7
60	NIEL DOSE Analysis on Triple Junction Cells 30% Efficient and Related Single Junctions. , 2017, , .		3
61	Scale Up Designs for Hand-Held Light-Weight TPV DC Power Supply. , 2017, , .		0
62	Combining tailor-made textures for light in-coupling and light trapping in liquid phase crystallized silicon thin-film solar cells. Optics Express, 2017, 25, A467.	1.7	10
63	Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures. Optics Express, 2017, 25, A473.	1.7	114
64	Investigation of Structural and Electronic Properties of CH3NH3PbI3 Stabilized by Varying Concentrations of Poly(Methyl Methacrylate) (PMMA). Coatings, 2017, 7, 115.	1.2	8
65	Multi-Objective Optimization for Color-Tunability and Transparency in Colloidal Quantum Dot Solar Cells. , 2017, , .		0
66	Benefits of a thermal drift during atomic layer deposition of Al2O3 for C-Si passivation. , 2017, , .		3
67	Aluminium metallisation for interdigitated back-contact silicon heterojunction solar cells. Japanese Journal of Applied Physics, 2017, 56, 08MB22.	0.8	4
68	Improved Light Management in Crystalline Silicon Thin-Film Solar Cells by Advanced Nano-Texture Fabrication. , 2017, , .		1
69	Angle-Resolved Reflectivity Analysis of Textured Substrates for Liquid-Phase Crystallized Silicon Thin-Film Solar Cells. , 2016, , .		0
70	Imprinted Nanostructures for Light Management in Crystalline Silicon Thin-Film Solar Cells on Glass. , 2016, , .		1
71	Interdigitated backâ€contact heterojunction solar cell concept for liquid phase crystallized thinâ€film silicon on glass. Progress in Photovoltaics: Research and Applications, 2016, 24, 716-724.	4.4	17
72	Enhanced stability of P3HT/poly rystalline Si thin film hybrid solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1904-1908.	0.8	4

#	Article	IF	CITATIONS
73	Improvement of the homogeneity of high mobility In ₂ O ₃ :H films by sputtering through a mesh electrode studied by Monte Carlo simulation and thin film analysis. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2310-2316.	0.8	3
74	<i>In situ</i> graphene doping as a route toward efficient perovskite tandem solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1989-1996.	0.8	11
75	Interface passivation of liquidâ€phase crystallized silicon on glass studied with highâ€frequency capacitance–voltage measurements. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1697-1704.	0.8	10
76	Backside contacted solar cells with heterojunction emitters and laser fired absorber contacts for crystalline silicon on glass. , 2016, , .		1
77	Diffusion length of photo-generated charge carriers in layers and powders of CH3NH3PbI3 perovskite. Applied Physics Letters, 2016, 109, .	1.5	33
78	Back- and Front-side Texturing for Light-management in Perovskite / Silicon-heterojunction Tandem Solar Cells. Energy Procedia, 2016, 102, 43-48.	1.8	14
79	Optimization of PECVD process for ultra-thin tunnel SiO <inf>x</inf> film as passivation layer for silicon heterojunction solar cells. , 2016, , .		4
80	Optical Properties of Smooth Anti-reflective Three-dimensional Textures for Silicon Thin-film Solar Cells. Energy Procedia, 2016, 102, 27-35.	1.8	2
81	Wafer Surface Tuning for a-Si:H/μc-Si:H/c-Si Triple Junction Solar Cells for Application in Water Splitting. Energy Procedia, 2016, 102, 126-135.	1.8	10
82	Facing the challenge of liquid phase crystallizing silicon on textured glass substrates. , 2016, , .		1
83	Analysis of local minority carrier diffusion lengths in liquid phase crystallized silicon thin-film solar cells. , 2016, , .		1
84	Sinusoidal nanotextures for light management in silicon thin-film solar cells. Nanoscale, 2016, 8, 8722-8728.	2.8	28
85	Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells. Journal of Optics (United Kingdom), 2016, 18, 064012.	1.0	82
86	Advantageous light management in Cu(In,Ga)Se2 superstrate solar cells. Solar Energy Materials and Solar Cells, 2016, 150, 76-81.	3.0	24
87	Liquid phase crystallized silicon on glass: Technology, material quality and back contacted heterojunction solar cells. Japanese Journal of Applied Physics, 2016, 55, 04EA04.	0.8	40
88	Radiation Hardness and Selfâ€Healing of Perovskite Solar Cells. Advanced Materials, 2016, 28, 8726-8731.	11.1	195
89	Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy. Scientific Reports, 2016, 6, 34675.	1.6	32
90	Crystalline silicon on glass—interface passivation and absorber material quality. Progress in Photovoltaics: Research and Applications, 2016, 24, 1499-1512.	4.4	19

#	Article	IF	CITATIONS
91	Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2016, 158, 77-83.	3.0	129
92	Architectures for scalable integrated photo driven catalytic devices-A concept study. International Journal of Hydrogen Energy, 2016, 41, 20823-20831.	3.8	14
93	Optimization of the post-deposition annealing process of high-mobility In2O3:H for photovoltaic applications. Thin Solid Films, 2016, 599, 78-83.	0.8	25
94	Screen-Printed Metallization Concepts for Large-Area Back-Contact Back-Junction Silicon Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 374-383.	1.5	10
95	A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351, 151-155.	6.0	2,514
96	Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy and Environmental Science, 2016, 9, 81-88.	15.6	536
97	Numerical Optical Optimization of Planar Monolithic Perovskite-Silicon Tandem Solar Cells. , 2016, , .		0
98	Valence band alignment and hole transport in amorphous/crystalline silicon heterojunction solar cells. Applied Physics Letters, 2015, 107, 013902.	1.5	47
99	Properties of Liquid Phase Crystallized Interdigitated Back-contact Solar Cells on Glass. Energy Procedia, 2015, 77, 487-492.	1.8	8
100	Silicon heterojunction solar cells with nanocrystalline Silicon Oxide emitter: Insights into charge carrier transport. , 2015, , .		1
101	Grazing incidence X-ray fluorescence analysis of buried interfaces in periodically structured crystalline silicon thin-film solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 529-534.	0.8	8
102	Valence band offset in heterojunctions between crystalline silicon and amorphous silicon (sub)oxides (a-SiOx:H, 0 < x < 2). Applied Physics Letters, 2015, 106, .	1.5	34
103	Nanoimprint-textured Glass Superstrates for Light Trapping in Crystalline Silicon thin-film Solar Cells. Energy Procedia, 2015, 84, 118-126.	1.8	4
104	Liquid phase crystallized silicon solar cells on glass: Material quality and device design. , 2015, , .		2
105	Evaluation of screen-printed metallization concepts for large-area BC-BJ solar cells. , 2015, , .		2
106	Influence of Barrier and Doping Type on the Open-Circuit Voltage of Liquid Phase-Crystallized Silicon Thin-Film Solar Cells on Glass. IEEE Journal of Photovoltaics, 2015, 5, 1001-1005.	1.5	22
107	Silicon Heterojunction Solar Cells With Nanocrystalline Silicon Oxide Emitter: Insights Into Charge Carrier Transport. IEEE Journal of Photovoltaics, 2015, 5, 1601-1605.	1.5	25
108	p-type microcrystalline silicon oxide emitter for silicon heterojunction solar cells allowing current densities above 40 mA/cm2. Applied Physics Letters, 2015, 106, .	1.5	93

#	Article	IF	CITATIONS
109	Hybrid Organic/Inorganic Thinâ€Film Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency. Advanced Materials, 2015, 27, 1262-1267.	11.1	40
110	Quadruple-junction solar cells and modules based on amorphous and microcrystalline silicon with high stable efficiencies. Japanese Journal of Applied Physics, 2015, 54, 08KB03.	0.8	33
111	Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells. Journal of Applied Physics, 2015, 117, .	1.1	22
112	Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2745-2750.	2.1	170
113	Towards monocrystalline silicon thin films grown on glass by liquid phase crystallization. Solar Energy Materials and Solar Cells, 2015, 140, 86-91.	3.0	34
114	PECVD-AlOx/SiNx passivation stacks on wet chemically oxidized silicon: Constant voltage stress investigations of charge dynamics and interface defect states. Solar Energy Materials and Solar Cells, 2015, 135, 49-56.	3.0	30
115	Preferential {100} grain orientation in 10 micrometer-thick laser crystallized multicrystalline silicon on glass. Thin Solid Films, 2015, 576, 68-74.	0.8	26
116	High mobility In2O3:H as contact layer for a-Si:H/c-Si heterojunction and μc-Si:H thin film solar cells. Thin Solid Films, 2015, 594, 316-322.	0.8	24
117	Temperature Dependence of the Band Gap of CH ₃ NH ₃ PbI ₃ Stabilized with PMMA: A Modulated Surface Photovoltage Study. Journal of Physical Chemistry C, 2015, 119, 23968-23972.	1.5	59
118	Nanocrystalline Silicon Oxide Emitters for Silicon Hetero Junction Solar Cells. Energy Procedia, 2015, 77, 304-310.	1.8	16
119	Liquid-Phase Crystallized Silicon Solar Cells on Glass: Increasing the Open-Circuit Voltage by Optimized Interlayers for n- and p-Type Absorbers. IEEE Journal of Photovoltaics, 2015, 5, 1757-1761.	1.5	14
120	Analysis of photo-current potentials and losses in thin film crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2015, 143, 457-466.	3.0	37
121	The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations. Energy Procedia, 2015, 77, 725-732.	1.8	37
122	Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass. Solar Energy Materials and Solar Cells, 2015, 135, 2-7.	3.0	39
123	Implications of TCO Topography on Intermediate Reflector Design for a-Si/μc-Si Tandem Solar Cells—Experiments and Rigorous Optical Simulations. IEEE Journal of Photovoltaics, 2014, 4, 10-15.	1.5	17
124	Solution-processed amorphous silicon surface passivation layers. Applied Physics Letters, 2014, 105, 122113.	1.5	13
125	PECVD-AlOx/SiNx Passivation Stacks on Silicon: Effective Charge Dynamics and Interface Defect State Spectroscopy. Energy Procedia, 2014, 55, 845-854.	1.8	31
126	Silicon Thin-Film Solar Cells on Glass With Open-Circuit Voltages Above 620 mV Formed by Liquid-Phase Crystallization. IEEE Journal of Photovoltaics, 2014, 4, 1496-1501.	1.5	47

#	Article	IF	CITATIONS
127	PECVD Intermediate and Absorber Layers Applied in Liquid-Phase Crystallized Silicon Solar Cells on Glass Substrates. IEEE Journal of Photovoltaics, 2014, 4, 1343-1348.	1.5	26
128	Micro-contacting of single and periodically arrayed columnar silicon structures by focused ion beam techniques. Applied Physics Letters, 2014, 104, 242104.	1.5	1
129	Field-effect passivation and degradation analyzed with photoconductance decay measurements. Applied Physics Letters, 2014, 104, 193504.	1.5	4
130	Improved conversion efficiency of a‧i:H/µc‧i:H thinâ€film solar cells by using annealed Alâ€doped zinc oxide as front electrode material. Progress in Photovoltaics: Research and Applications, 2014, 22, 1285-1291.	4.4	24
131	Impact of dislocations and dangling bond defects on the electrical performance of crystalline silicon thin films. Applied Physics Letters, 2014, 105, .	1.5	19
132	Very thin, highlyâ€conductive ZnO:Al front electrode on textured glass as substrate for thinâ€film silicon solar cells. Physica Status Solidi - Rapid Research Letters, 2014, 8, 44-47.	1.2	10
133	Crack formation and Zn diffusion in high-temperature processed poly-Si/ZnO:Al stacks. Thin Solid Films, 2014, 566, 83-87.	0.8	3
134	Comparative study of backside reflectors on a-Si:H/µc-Si:H thin film solar cells. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2078-2081.	0.8	2
135	EMIL: The energy materials in situ laboratory Berlin. , 2014, , .		4
136	Material properties of high-mobility TCOs and application to solar cells. Proceedings of SPIE, 2014, , .	0.8	1
137	Investigation of Band Tailing in Sputtered ZnO:Al Thin Films Regarding Structural Properties and Impurities. Materials Research Society Symposia Proceedings, 2014, 1699, 1.	0.1	0
138	A comparison of scattering and non-scattering anti-reflection designs for back contacted polycrystalline thin film silicon solar cells in superstrate configuration. , 2014, , .		2
139	Comparison of TMB and B2H6 as Precursors for Emitter Doping in High Efficiency Silicon Hetero Junction Solar Cells. Energy Procedia, 2014, 60, 123-128.	1.8	12
140	Potential of high-mobility sputtered zinc oxide as front contact for high efficiency thin film silicon solar cells. Thin Solid Films, 2014, 555, 138-142.	0.8	7
141	Metastable Defect Formation at Microvoids Identified as a Source of Light-Induced Degradation in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mirow><mml:mi>a</mml:mi><mml:mtext>â^?</mml:mtext><mml:mi>Si</mml:mi><mml:m mathvariant="normal">H</mml:m </mml:mirow></mml:math> . Physical Review Letters, 2014, 112,	າວ 2:9 /mm	l:mʊ͡͡͡͡͡ơ> <mml:n< td=""></mml:n<>
142	Conversion efficiency and process stability improvement of electron beam crystallized thin film silicon solar cells on glass. Solar Energy Materials and Solar Cells, 2014, 123, 13-16.	3.0	49
143	Solutionâ€Processed Crystalline Silicon Thinâ€Film Solar Cells. Advanced Materials Interfaces, 2014, 1, 1300046.	1.9	17
144	Advanced Metallization Concepts for p-type Silicon Metal-Wrap-Through (MWT) Solar Cells. Energy Technology, 2014, 2, 34-42.	1.8	2

#	Article	IF	CITATIONS
145	Equilibrium shapes of polycrystalline silicon nanodots. Journal of Applied Physics, 2014, 115, 074304.	1.1	11
146	Advanced microhole arrays for light trapping in thin film silicon solar cells. Solar Energy Materials and Solar Cells, 2014, 125, 298-304.	3.0	6
147	Annealing related changes in nearâ€edge absorption and structural properties of Alâ€doped ZnO thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1468-1471.	0.8	0
148	Towards wafer quality crystalline silicon thin-film solar cells on glass. Solar Energy Materials and Solar Cells, 2014, 128, 190-197.	3.0	105
149	The influence of space charge regions on effective charge carrier lifetime in thin films and resulting opportunities for materials characterization. Journal of Applied Physics, 2013, 113, 044510.	1.1	3
150	Chemical interaction at the buried silicon/zinc oxide thin-film solar cell interface as revealed by hard X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 309-313.	0.8	6
151	Technological status of polycrystalline silicon thin-film solar cells on glass. Solar Energy Materials and Solar Cells, 2013, 119, 306-308.	3.0	15
152	Approach for a Simplified Fabrication Process for IBC-SHJ Solar Cells with High Fill Factors. Energy Procedia, 2013, 38, 732-736.	1.8	9
153	Achievements and challenges in thin film silicon module production. Solar Energy Materials and Solar Cells, 2013, 119, 196-203.	3.0	32
154	Defect annealing processes for polycrystalline silicon thin-film solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 670-675.	1.7	14
155	Directional growth and crystallization of silicon thin films prepared by electron-beam evaporation on oblique and textured surfaces. Journal of Crystal Growth, 2013, 367, 126-130.	0.7	28
156	p-Type a-Si:H/ZnO:Al and μc-Si:H/ZnO:Al Thin-Film Solar Cell Structures—A Comparative Hard X-Ray Photoelectron Spectroscopy Study. IEEE Journal of Photovoltaics, 2013, 3, 483-487.	1.5	4
157	Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582mV open-circuit voltage. Solar Energy Materials and Solar Cells, 2013, 115, 7-10.	3.0	50
158	Polycrystalline silicon thin-film solar cells: Status and perspectives. Solar Energy Materials and Solar Cells, 2013, 119, 112-123.	3.0	141
159	An effective medium approach for modeling polycrystalline silicon thin film solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 152-160.	3.0	7
160	Atomic Structure of Interface States in Silicon Heterojunction Solar Cells. Physical Review Letters, 2013, 110, 136803.	2.9	29
161	Optical properties and Limits of a Large-Area Periodic Nanophotonic Light Trapping Design for Polycrystalline Silicon Thin Film Solar Cells. Materials Research Society Symposia Proceedings, 2013, 1493, 59-64.	0.1	2
162	Impact of the transparent conductive oxide work function on injection-dependent a-Si:H/c-Si band bending and solar cell parameters. Journal of Applied Physics, 2013, 113, .	1.1	55

#	Article	IF	CITATIONS
163	A novel light trapping concept for liquid phase crystallized poly-Si thin-film solar cells on periodically nanoimprinted glass substrates. , 2013, , .		5
164	Identification of intraâ€grain and grain boundary defects in polycrystalline Si thin films by electron paramagnetic resonance. Physica Status Solidi - Rapid Research Letters, 2013, 7, 959-962.	1.2	16
165	Nanophotonic light trapping in 3-dimensional thin-film silicon architectures. Optics Express, 2013, 21, A42.	1.7	21
166	FEM-based optical modeling of silicon thin-film tandem solar cells with randomly textured interfaces in 3D. Proceedings of SPIE, 2013, , .	0.8	4
167	Nanophotonic light trapping in polycrystalline silicon thin-film solar cells using periodically nanoimprint-structured glass substrates. Proceedings of SPIE, 2013, , .	0.8	0
168	Light trapping in polycrystalline silicon thin-film solar cells based on liquid phase crystallization on textured substrates. , 2013, , .		3
169	The growth of microcrystalline silicon oxide thin films studied by in situ plasma diagnostics. Applied Physics Letters, 2013, 102, 051906.	1.5	24
170	Analysis of Urbach-like absorption tails in thermally treated ZnO:Al thin films. Applied Physics Letters, 2013, 103, 192108.	1.5	14
171	The silicon/zinc oxide interface in amorphous silicon-based thin-film solar cells: Understanding an empirically optimized contact. Applied Physics Letters, 2013, 103, .	1.5	12
172	Correlation between structural and opto-electronic characteristics of crystalline Si microhole arrays for photonic light management. Journal of Applied Physics, 2013, 114, 173513.	1.1	1
173	Optical analysis of subbandgap defects in polycrystalline silicon thin film solar cells. , 2013, , .		0
174	Photoconductivity and optical properties of silicon coated by thin TiO ₂ film <i>in situ</i> doped by Au nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 687-694.	0.8	8
175	Chemical speciation at buried interfaces in high-temperature processed polycrystalline silicon thin-film solar cells on ZnO:Al. Journal of Applied Physics, 2013, 113, .	1.1	18
176	ZnO:Al with tuned properties for photovoltaic applications: thin layers and high mobility material. Proceedings of SPIE, 2013, , .	0.8	3
177	Structural properties of Si/SiO ₂ nanostructures grown by decomposition of substoichiometric SiO _{<i>x</i>} N _{<i>y</i>} layers for photovoltaic applications. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 676-681.	0.8	0
178	Photoluminescence study of polycrystalline silicon thin films prepared by liquid and solid phase crystallization. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1652-1656.	0.8	3
179	Analysis of absorption enhancement in tailorâ€made periodic polycrystalline silicon microarrays. Physica Status Solidi - Rapid Research Letters, 2013, 7, 1045-1049.	1.2	3
180	Optical characterization of high mobility polycrystalline ZnO:Al films. Proceedings of SPIE, 2012, , .	0.8	8

#	Article	IF	CITATIONS
181	Large-area 2D periodic crystalline silicon nanodome arrays on nanoimprinted glass exhibiting photonic band structure effects. Nanotechnology, 2012, 23, 135302.	1.3	19
182	3D optical modeling of thin-film a-Si/Âμc-Si tandem solar cells with random textured interfaces using FEM. , 2012, , .		1
183	Influence of deep defects on device performance of thin-film polycrystalline silicon solar cells. Applied Physics Letters, 2012, 101, 123904.	1.5	24
184	An improved siliconâ€oxideâ€based intermediateâ€reflector for micromorph solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2145-2148.	0.8	17
185	Structural investigations of silicon nanostructures grown by self-organized island formation for photovoltaic applications. Applied Physics A: Materials Science and Processing, 2012, 108, 719-726.	1.1	5
186	Nanowire Arrays in Multicrystalline Silicon Thin Films on Glass: A Promising Material for Research and Applications in Nanotechnology. Nano Letters, 2012, 12, 4050-4054.	4.5	74
187	Progress in Point Contacted Rear Silicon Heterojunction Solar Cells. Energy Procedia, 2012, 27, 116-121.	1.8	11
188	Direct growth of periodic silicon nanostructures on imprinted glass for photovoltaic and photonic applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2079-2082.	0.8	16
189	Light harvesting architectures for electron beam evaporated solid phase crystallized Si thin film solar cells: Statistical and periodic approaches. Journal of Non-Crystalline Solids, 2012, 358, 2303-2307.	1.5	7
190	Comparison of growth methods for Si/SiO2 nanostructures as nanodot hetero-emitters for photovoltaic applications. Journal of Non-Crystalline Solids, 2012, 358, 2253-2256.	1.5	4
191	Dangling bonds in amorphous silicon investigated by multifrequency EPR. Journal of Non-Crystalline Solids, 2012, 358, 2067-2070.	1.5	5
192	Melting and solidification behavior of laser-crystallized silicon thin-films studied by transient conductance measurements. Journal of Non-Crystalline Solids, 2012, 358, 2159-2161.	1.5	0
193	Origin of preferential grain orientation in excimer laser-induced crystallization of silicon thin films. Applied Physics Letters, 2012, 100, .	1.5	15
194	Improving the electrical and optical properties of DC-sputtered ZnO:Al by thermal post deposition treatments. Thin Solid Films, 2012, 520, 4203-4207.	0.8	39
195	Impact of a-Si:H hydrogen depth profiles on passivation properties in a-Si:H/c-Si heterojunctions. Thin Solid Films, 2012, 520, 4439-4444.	0.8	20
196	Discerning passivation mechanisms at a-Si:H/c-Si interfaces by means of photoconductance measurements. Applied Physics Letters, 2011, 98, .	1.5	79
197	Combined multifrequency EPR and DFT study of dangling bonds in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>a</mml:mi>-Si:H. Physical Review B, 2011, 84, .</mml:math 	1.1	31
198	Etching of a-Si:H on c-Si absorber monitored by in situ photoluminescence measurements. Energy Procedia, 2011, 8, 269-274.	1.8	4

#	Article	IF	CITATIONS
199	Impact of Fermi-level dependent defect equilibration on Voc of amorphous/crystalline silicon heterojunction solar cells. Energy Procedia, 2011, 8, 282-287.	1.8	32
200	Polycrystalline silicon thin films by high-rate electronbeam evaporation for photovoltaic applications – Influence of substrate texture and temperature. Energy Procedia, 2011, 10, 61-65.	1.8	29
201	Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells. Journal of Applied Physics, 2011, 110, 063530.	1.1	20
202	Contact resistivity measurements of the buried Si–ZnO:Al interface of polycrystalline silicon thin-film solar cells on ZnO:Al. Thin Solid Films, 2011, 520, 1268-1273.	0.8	8
203	Organic photovoltaic cells with interdigitated structures based on pentacene nanocolumn arrays. Organic Electronics, 2011, 12, 2180-2184.	1.4	12
204	Electrical detection of electron-spin-echo envelope modulations in thin-film silicon solar cells. Physical Review B, 2011, 84, .	1.1	16
205	Efficient interdigitated back ontacted silicon heterojunction solar cells. Physica Status Solidi - Rapid Research Letters, 2011, 5, 159-161.	1.2	83
206	Largeâ€erea fabrication of equidistant freeâ€standing Si crystals on nanoimprinted glass. Physica Status Solidi - Rapid Research Letters, 2011, 5, 376-378.	1.2	18
207	Large area PECVD of aâ€5i:H/aâ€5i:H tandem solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2982-2985.	0.8	8
208	Hard x-ray photoelectron spectroscopy study of the buried Si/ZnO thin-film solar cell interface: Direct evidence for the formation of Si–O at the expense of Zn-O bonds. Applied Physics Letters, 2011, 99, .	1.5	28
209	Band lineup in amorphous/crystalline silicon heterojunctions and the impact of hydrogen microstructure and topological disorder. Physical Review B, 2011, 83, .	1.1	96
210	Band alignment at amorphous/crystalline silicon hetero-interfaces. Materials Research Society Symposia Proceedings, 2011, 1321, 323.	0.1	2
211	Rigorous optical simulation of light management in crystalline silicon thin film solar cells with rough interface textures. Proceedings of SPIE, 2011, , .	0.8	9
212	Growth of polycrystalline silicon on glass for thin-film solar cells. Journal of Crystal Growth, 2010, 312, 1277-1281.	0.7	32
213	GIXRF–NEXAFS investigations on buried ZnO/Si interfaces: A first insight in changes of chemical states due to annealing of the specimen. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 370-373.	0.6	16
214	High-forward-bias transport mechanism in a-Si:H/c-Si heterojunction solar cells. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 657-660.	0.8	8
215	Hydrogen distribution in the vicinity of dangling bonds in hydrogenated amorphous silicon (a‣i:H). Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 552-555.	0.8	16
216	Crystal nucleation in electron-beam evaporated amorphous silicon on ZnO:Al- and SiN-coated glass for thin film solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	0

#	Article	IF	CITATIONS
217	Crystallization Kinetics in High-rate Electron Beam Evaporated Poly-Si Thin Film Solar Cells on ZnO:Al. Materials Research Society Symposia Proceedings, 2010, 1245, 1.	0.1	1
218	Modification of light scattering properties of boron doped zinc oxide grown by Low Pressure Chemical Vapour Deposition using wet chemical etching. , 2010, , .		1
219	Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface. Applied Physics Letters, 2010, 97, 072105.	1.5	11
220	Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions. Applied Physics Letters, 2010, 96, .	1.5	127
221	Challenges and opportunities of electron beam evaporation in the preparation of poly-Si thin film solar cells. , 2010, , .		11
222	Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells. Journal of Applied Physics, 2010, 107, .	1.1	100
223	Improved electrical transport in Al-doped zinc oxide by thermal treatment. Journal of Applied Physics, 2010, 107, .	1.1	172
224	Microstructure and photovoltaic performance of polycrystalline silicon thin films on temperature-stable ZnO:Al layers. Journal of Applied Physics, 2009, 106, .	1.1	47
225	Crystallization kinetics in electron-beam evaporated amorphous silicon on ZnO:Al-coated glass for thin film solar cells. Applied Physics Letters, 2009, 95, 101902.	1.5	31
226	Polycrystalline silicon thin-film solar cells on ZnO:Al-coated glass substrates. , 2009, , .		0
227	Accelerated interface defect removal in amorphous/crystalline silicon heterostructures using pulsed annealing and microwave heating. Applied Physics Letters, 2009, 95, .	1.5	37
228	Oxygen and nitrogen impurities in microcrystalline silicon deposited under optimized conditions: Influence on material properties and solar cell performance. Journal of Applied Physics, 2009, 105, 074509.	1.1	44
229	Electrical detection of electron spin resonance in microcrystalline silicon pin solar cells. Philosophical Magazine, 2009, 89, 2655-2676.	0.7	14
230	Planar rear emitter back contact silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1900-1903.	3.0	27
231	Development of a rapid thermal annealing process for polycrystalline silicon thin-film solar cells on glass. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 329-332.	1.7	30
232	Influence of Hydrogen Plasma on the Defect Passivation of Polycrystalline Si Thin Film Solar Cells. Plasma Processes and Polymers, 2009, 6, S36.	1.6	33
233	Optical modeling of free electron behavior in highly doped ZnO films. Thin Solid Films, 2009, 518, 1289-1293.	0.8	70
234	Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 855-858.	3.0	26

#	Article	IF	CITATIONS
235	Polycrystalline silicon thin-film solar cells on glass. Solar Energy Materials and Solar Cells, 2009, 93, 1004-1008.	3.0	75
236	The Investigation of Crystallization of a-Si Films Deposited on Different Orientations by Solid Phase Epitaxy Process. Praktische Metallographie/Practical Metallography, 2009, 46, 537-551.	0.1	1
237	Influence of contaminations on the performance of thin-film silicon solar cells prepared after in situ reactor plasma cleaning. Thin Solid Films, 2008, 516, 4639-4644.	0.8	13
238	Recent development on surface-textured ZnO:Al films prepared by sputtering for thin-film solar cell application. Thin Solid Films, 2008, 516, 5836-5841.	0.8	120
239	Experimental studies and limitations of the light trapping and optical losses in microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 1037-1042.	3.0	77
240	Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy. Thin Solid Films, 2008, 516, 4633-4638.	0.8	18
241	High deposition rate aluminium-doped zinc oxide films with highly efficient light trapping for silicon thin film solar cells. Thin Solid Films, 2008, 516, 1242-1248.	0.8	53
242	High rate direct current magnetron sputtered and texture-etched zinc oxide films for silicon thin film solar cells. Thin Solid Films, 2008, 516, 4628-4632.	0.8	48
243	Large-grained poly-Si films on ZnO:Al coated glass substrates. Thin Solid Films, 2008, 516, 6869-6872.	0.8	22
244	Recombination and transport in microcrystalline pin solar cells studied with pulsed electrically detected magnetic resonance. Journal of Non-Crystalline Solids, 2008, 354, 2411-2415.	1.5	13
245	Ultrathin SiO2layers on Si(111): preparation, interface gap states and the influence of passivation. Nanotechnology, 2008, 19, 424020.	1.3	21
246	Polycrystalline Silicon Thin-film Solar Cells on ZnO:Al Coated Glass. Materials Research Society Symposia Proceedings, 2008, 1066, 1.	0.1	2
247	Planar rear emitter back contact amorphous/crystalline silicon heterojunction solar cells (RECASH /) Tj ETQq1 1).784314 0.0	rgBT /Overloo
248	Transient depletion of source gases during materials processing: a case study on the plasma deposition of microcrystalline silicon. New Journal of Physics, 2007, 9, 280-280.	1.2	32
249	Temperature stability of ZnO:Al film properties for poly-Si thin-film devices. Applied Physics Letters, 2007, 91, 241911.	1.5	39
250	Microcrystalline silicon solar cells with an open-circuit voltage above 600mV. Applied Physics Letters, 2007, 90, 183504.	1.5	30
251	Hidden parameters in the plasma deposition of microcrystalline silicon solar cells. Journal of Materials Research, 2007, 22, 1767-1774.	1.2	12
252	The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. Journal of Applied Physics, 2007, 101, 074903.	1.1	469

#	Article	IF	CITATIONS
253	Flexible amorphous and microcrystalline silicon tandem solar modules in the temporary superstrate concept. Solar Energy Materials and Solar Cells, 2007, 91, 572-580.	3.0	64
254	Microcrystalline silicon deposition: Process stability and process control. Thin Solid Films, 2007, 515, 7455-7459.	0.8	31
255	Photodetectors based on amorphous and microcrystalline silicon. Thin Solid Films, 2007, 515, 7522-7525.	0.8	14
256	Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer. Progress in Photovoltaics: Research and Applications, 2007, 15, 291-301.	4.4	30
257	Flexible a-Si/μc-Si Tandem Modules in the Helianthos Project. , 2006, , .		2
258	Microcrystalline Silicon Solar Cells: Theory and Diagnostic Tools. , 2006, , .		9
259	Stability of Thin-Film Silicon Solar Cells. , 2006, , .		2
260	Thin-film silicon solar cells with grating couplers – An experimental and numerical study. Journal of Non-Crystalline Solids, 2006, 352, 1949-1952.	1.5	16
261	Design of ZnO:Al films with optimized surface texture for silicon thin-film solar cells. , 2006, , .		8
262	Microcrystalline silicon thin film solar modules on glass. Solar Energy Materials and Solar Cells, 2006, 90, 3047-3053.	3.0	13
263	Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 3054-3060.	3.0	120
264	Material study on reactively sputtered zinc oxide for thin film silicon solar cells. Thin Solid Films, 2006, 502, 286-291.	0.8	101
265	A new concept for mass production of large area thin-film silicon solar cells on glass. Thin Solid Films, 2006, 502, 300-305.	0.8	39
266	Challenges in microcrystalline silicon based solar cell technology. Thin Solid Films, 2006, 511-512, 548-555.	0.8	113
267	The role of plasma induced substrate heating during high rate deposition of microcrystalline silicon solar cells. Thin Solid Films, 2006, 511-512, 562-566.	0.8	30
268	Comparative material study on RF and DC magnetron sputtered ZnO:Al films. Thin Solid Films, 2006, 502, 311-316.	0.8	119
269	ZnO:Al films deposited by in-line reactive AC magnetron sputtering for a-Si:H thin film solar cells. Thin Solid Films, 2006, 496, 16-25.	0.8	88
270	Damp heat stability and annealing behavior of aluminum doped zinc oxide films prepared by magnetron sputtering. Thin Solid Films, 2006, 511-512, 673-677.	0.8	69

#	Article	IF	CITATIONS
271	Light trapping in thin-film silicon solar cells by nano-textured interfaces. , 2006, 6197, 619701.		26
272	Production Equipment for Large Area Deposition of Amorphous and Microcrystalline Silicon Thin-Film Solar Cells. , 2006, , .		3
273	Plasma emission diagnostics for the transition from microcrystalline to amorphous silicon solar cells. Solar Energy Materials and Solar Cells, 2005, 87, 795-805.	3.0	24
274	Highly efficient microcrystalline silicon solar cells deposited from a pure SiH4 flow. Applied Physics Letters, 2005, 87, 263503.	1.5	71
275	Influence of the total gas flow on the deposition of microcrystalline silicon solar cells. Thin Solid Films, 2004, 451-452, 466-469.	0.8	28
276	Silicontetrachloride based microcrystalline silicon for application in thin film silicon solar cells. Thin Solid Films, 2004, 451-452, 280-284.	0.8	1
277	TCO and light trapping in silicon thin film solar cells. Solar Energy, 2004, 77, 917-930.	2.9	951
278	Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates. Solar Energy Materials and Solar Cells, 2004, , .	3.0	36
279	Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. Journal of Applied Physics, 2004, 95, 1911-1917.	1.1	251
280	Absorption loss at nanorough silver back reflector of thin-film silicon solar cells. Journal of Applied Physics, 2004, 95, 1427-1429.	1.1	213
281	Deposition and properties of microcrystalline silicon from chlorosilane precursor gases. Journal of Non-Crystalline Solids, 2004, 338-340, 147-150.	1.5	4
282	Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells. Thin Solid Films, 2003, 430, 202-207.	0.8	99
283	Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour. Thin Solid Films, 2003, 442, 80-85.	0.8	328
284	State-of-the-art mid-frequency sputtered ZnO films for thin film silicon solar cells and modules. Thin Solid Films, 2003, 442, 158-162.	0.8	62
285	Optimization of the electrical properties of magnetron sputtered aluminum-doped zinc oxide films for opto-electronic applications. Thin Solid Films, 2003, 442, 167-172.	0.8	106
286	Structure of PECVD Si:H films for solar cell applications. Solar Energy Materials and Solar Cells, 2003, 77, 125-143.	3.0	21
287	Microcrystalline silicon for large area thin film solar cells. Thin Solid Films, 2003, 427, 157-165.	0.8	141
288	Low temperature nanoscopic kinetics of hydrogen plasma-enhanced crystallization of a-Si:H films. Journal of Applied Physics, 2003, 94, 443-453.	1.1	4

#	Article	IF	CITATIONS
289	Amorphous and Microcrystalline Silicon Based Solar Cells and Modules on Textured Zinc Oxide Coated Glass Substrates. Materials Research Society Symposia Proceedings, 2003, 762, 311.	0.1	20
290	Material Aspects of Reactively MF-Sputtered Zinc Oxide for TCO Application in Silicon Thin Film Solar Cells. Materials Research Society Symposia Proceedings, 2003, 762, 7111.	0.1	10
291	Comprehensive study of microcrystalline silicon solar cells deposited at high rate using 13.56 MHz plasma-enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 492-498.	0.9	102
292	Cross-section of Si:H solar cells prepared by PECVD at the edge of crystallization. Journal of Non-Crystalline Solids, 2002, 299-302, 1167-1172.	1.5	1
293	High Rate Deposition of Microcrystalline Silicon Solar Cells Using 13.56 MHz PECVD – Prerequisites and Limiting Factors. Materials Research Society Symposia Proceedings, 2002, 715, 2651.	0.1	6
294	Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration. Solar Energy Materials and Solar Cells, 2002, 74, 469-478.	3.0	15
295	New materials and deposition techniques for highly efficient silicon thin film solar cells. Solar Energy Materials and Solar Cells, 2002, 74, 439-447.	3.0	115
296	Microcrystalline silicon solar cells prepared by 13.56 MHz PECVD at high growth rates: Solar cell and material properties. Materials Research Society Symposia Proceedings, 2001, 664, 2551.	0.1	9
297	Upscaling of texture-etched zinc oxide substrates for silicon thin film solar cells. Thin Solid Films, 2001, 392, 327-333.	0.8	52
298	Thickness dependence of microcrystalline silicon solar cell properties. Solar Energy Materials and Solar Cells, 2001, 66, 345-351.	3.0	68
299	Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56MHz) plasma excitation frequencies. Solar Energy Materials and Solar Cells, 2001, 66, 267-273.	3.0	73
300	Development of highly efficient thin film silicon solar cells on texture-etched zinc oxide-coated glass substrates. Solar Energy Materials and Solar Cells, 2001, 66, 275-281.	3.0	88
301	Dünnschichtsolarzellen. Vakuum in Forschung Und Praxis, 2000, 12, 306-312.	0.0	0
302	Intrinsic microcrystalline silicon: A new material for photovoltaics. Solar Energy Materials and Solar Cells, 2000, 62, 97-108.	3.0	566
303	Texture-etched zinc oxide substrates for silicon thin film solar cells-from laboratory size to large areas. , 2000, , .		0
304	Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films, 1999, 351, 247-253.	0.8	527
305	Recent developments of silicon thin film solar cells on glass substrates. Thin Solid Films, 1999, 351, 241-246.	0.8	73
306	Potential of amorphous silicon for solar cells. Applied Physics A: Materials Science and Processing, 1999, 69, 155-167.	1.1	283

#	Article	IF	CITATIONS
307	Influence of excitation frequency, temperature, and hydrogen dilution on the stability of plasma enhanced chemical vapor deposited a-Si:H. Journal of Applied Physics, 1998, 84, 3949-3953.	1.1	50
308	Solution of the ZnO/p contact problem in a-Si:H solar cells. Solar Energy Materials and Solar Cells, 1996, 41-42, 485-492.	3.0	58
309	Improvement in stabilized efficiency of a-Si:H solar cells through optimized p/i-interface layers. Solar Energy Materials and Solar Cells, 1996, 41-42, 475-483.	3.0	27
310	Recent developments in amorphous siliconâ€based solar cells. Physica Status Solidi (B): Basic Research, 1996, 194, 41-53.	0.7	35
311	Texture etched ZnO:Al films as front contact and back reflector in amorphous silicon p-i-n and n-i-p solar cells. , 0, , .		6
312	Large area deposition of intrinsic microcrystalline silicon for thin film solar cells. , 0, , .		1
313	High rate deposition of microcrystalline silicon solar cells using 13.56 MHz PECVD. , 0, , .		4
314	Detailed accounting for quantum efficiency and optical losses in a-Si:H based solar cells. , 0, , .		3