Bernd Rech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7046059/publications.pdf

Version: 2024-02-01

314 papers

18,510 citations

64 h-index 128 g-index

322 all docs 322 docs citations

times ranked

322

13256 citing authors

#	Article	IF	Citations
1	A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351, 151-155.	12.6	2,514
2	Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370, 1300-1309.	12.6	1,120
3	TCO and light trapping in silicon thin film solar cells. Solar Energy, 2004, 77, 917-930.	6.1	951
4	Intrinsic microcrystalline silicon: A new material for photovoltaics. Solar Energy Materials and Solar Cells, 2000, 62, 97-108.	6.2	566
5	Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy and Environmental Science, 2016, 9, 81-88.	30.8	536
6	Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films, 1999, 351, 247-253.	1.8	527
7	Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy and Environmental Science, 2019, 12, 3356-3369.	30.8	519
8	The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. Journal of Applied Physics, 2007, 101, 074903.	2.5	469
9	Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour. Thin Solid Films, 2003, 442, 80-85.	1.8	328
10	Potential of amorphous silicon for solar cells. Applied Physics A: Materials Science and Processing, 1999, 69, 155-167.	2.3	283
11	Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy and Environmental Science, 2018, 11, 3511-3523.	30.8	281
12	On the Relation between the Openâ€Circuit Voltage and Quasiâ€Fermi Level Splitting in Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901631.	19.5	275
13	Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. Journal of Applied Physics, 2004, 95, 1911-1917.	2.5	251
14	Absorption loss at nanorough silver back reflector of thin-film silicon solar cells. Journal of Applied Physics, 2004, 95, 1427-1429.	2.5	213
15	Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustainable Energy and Fuels, 2019, 3, 1995-2005.	4.9	208
16	Radiation Hardness and Selfâ€Healing of Perovskite Solar Cells. Advanced Materials, 2016, 28, 8726-8731.	21.0	195
17	On the Origin of the Ideality Factor in Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000502.	19.5	175
18	Improved electrical transport in Al-doped zinc oxide by thermal treatment. Journal of Applied Physics, 2010, 107, .	2.5	172

#	Article	IF	CITATIONS
19	Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2745-2750.	4.6	170
20	21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se ₂ Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces. ACS Energy Letters, 2019, 4, 583-590.	17.4	155
21	Microcrystalline silicon for large area thin film solar cells. Thin Solid Films, 2003, 427, 157-165.	1.8	141
22	Polycrystalline silicon thin-film solar cells: Status and perspectives. Solar Energy Materials and Solar Cells, 2013, 119, 112-123.	6.2	141
23	The Doping Mechanism of Halide Perovskite Unveiled by Alkaline Earth Metals. Journal of the American Chemical Society, 2020, 142, 2364-2374.	13.7	132
24	Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2016, 158, 77-83.	6.2	129
25	Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions. Applied Physics Letters, 2010, 96, .	3.3	127
26	Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 3054-3060.	6.2	120
27	Recent development on surface-textured ZnO:Al films prepared by sputtering for thin-film solar cell application. Thin Solid Films, 2008, 516, 5836-5841.	1.8	120
28	Comparative material study on RF and DC magnetron sputtered ZnO:Al films. Thin Solid Films, 2006, 502, 311-316.	1.8	119
29	Correlation between Electronic Defect States Distribution and Device Performance of Perovskite Solar Cells. Advanced Science, 2017, 4, 1700183.	11.2	117
30	New materials and deposition techniques for highly efficient silicon thin film solar cells. Solar Energy Materials and Solar Cells, 2002, 74, 439-447.	6.2	115
31	Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures. Optics Express, 2017, 25, A473.	3.4	114
32	Challenges in microcrystalline silicon based solar cell technology. Thin Solid Films, 2006, 511-512, 548-555.	1.8	113
33	It Takes Two to Tangoâ€"Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 17245-17255.	8.0	107
34	Optimization of the electrical properties of magnetron sputtered aluminum-doped zinc oxide films for opto-electronic applications. Thin Solid Films, 2003, 442, 167-172.	1.8	106
35	Towards wafer quality crystalline silicon thin-film solar cells on glass. Solar Energy Materials and Solar Cells, 2014, 128, 190-197.	6.2	105
36	Proton Radiation Hardness of Perovskite Tandem Photovoltaics. Joule, 2020, 4, 1054-1069.	24.0	104

#	Article	IF	Citations
37	Perovskite solar cells: On top of commercial photovoltaics. Nature Energy, 2017, 2, .	39.5	103
38	Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells. ACS Photonics, 2017, 4, 1232-1239.	6.6	103
39	Ion Migrationâ€Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000310.	19.5	103
40	Comprehensive study of microcrystalline silicon solar cells deposited at high rate using 13.56 MHz plasma-enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 492-498.	2.1	102
41	Coâ€Evaporated Formamidinium Lead lodide Based Perovskites with 1000 h Constant Stability for Fully Textured Monolithic Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 2021, 11, 2101460.	19.5	102
42	Material study on reactively sputtered zinc oxide for thin film silicon solar cells. Thin Solid Films, 2006, 502, 286-291.	1.8	101
43	Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells. Journal of Applied Physics, 2010, 107, .	2.5	100
44	Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells. Thin Solid Films, 2003, 430, 202-207.	1.8	99
45	Band lineup in amorphous/crystalline silicon heterojunctions and the impact of hydrogen microstructure and topological disorder. Physical Review B, 2011, 83, .	3.2	96
46	Defect Dynamics in Proton Irradiated CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Advanced Electronic Materials, 2017, 3, 1600438.	5.1	96
47	p-type microcrystalline silicon oxide emitter for silicon heterojunction solar cells allowing current densities above 40 mA/cm2. Applied Physics Letters, 2015, 106, .	3.3	93
48	Crystalline silicon solar cells with tetracene interlayers: the path to silicon-singlet fission heterojunction devices. Materials Horizons, 2018, 5, 1065-1075.	12.2	92
49	Development of highly efficient thin film silicon solar cells on texture-etched zinc oxide-coated glass substrates. Solar Energy Materials and Solar Cells, 2001, 66, 275-281.	6.2	88
50	ZnO:Al films deposited by in-line reactive AC magnetron sputtering for a-Si:H thin film solar cells. Thin Solid Films, 2006, 496, 16-25.	1.8	88
51	Efficient interdigitated backâ€contacted silicon heterojunction solar cells. Physica Status Solidi - Rapid Research Letters, 2011, 5, 159-161.	2.4	83
52	Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells. Journal of Optics (United Kingdom), 2016, 18, 064012.	2.2	82
53	Discerning passivation mechanisms at a-Si:H/c-Si interfaces by means of photoconductance measurements. Applied Physics Letters, 2011, 98, .	3.3	79
54	Co-Evaporated p-i-n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer. ACS Applied Materials & Empty (Interfaces, 2020, 12, 39261-39272.	8.0	79

#	Article	IF	CITATIONS
55	Experimental studies and limitations of the light trapping and optical losses in microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 1037-1042.	6.2	77
56	Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy and Environmental Science, 2021, 14, 4508-4522.	30.8	76
57	Polycrystalline silicon thin-film solar cells on glass. Solar Energy Materials and Solar Cells, 2009, 93, 1004-1008.	6.2	75
58	Nanowire Arrays in Multicrystalline Silicon Thin Films on Glass: A Promising Material for Research and Applications in Nanotechnology. Nano Letters, 2012, 12, 4050-4054.	9.1	74
59	Recent developments of silicon thin film solar cells on glass substrates. Thin Solid Films, 1999, 351, 241-246.	1.8	73
60	Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56MHz) plasma excitation frequencies. Solar Energy Materials and Solar Cells, 2001, 66, 267-273.	6.2	73
61	Highly efficient microcrystalline silicon solar cells deposited from a pure SiH4 flow. Applied Physics Letters, 2005, 87, 263503.	3.3	71
62	Optical modeling of free electron behavior in highly doped ZnO films. Thin Solid Films, 2009, 518, 1289-1293.	1.8	70
63	Damp heat stability and annealing behavior of aluminum doped zinc oxide films prepared by magnetron sputtering. Thin Solid Films, 2006, 511-512, 673-677.	1.8	69
64	Thickness dependence of microcrystalline silicon solar cell properties. Solar Energy Materials and Solar Cells, 2001, 66, 345-351.	6.2	68
65	Flexible amorphous and microcrystalline silicon tandem solar modules in the temporary superstrate concept. Solar Energy Materials and Solar Cells, 2007, 91, 572-580.	6.2	64
66	State-of-the-art mid-frequency sputtered ZnO films for thin film silicon solar cells and modules. Thin Solid Films, 2003, 442, 158-162.	1.8	62
67	Temperature Dependence of the Band Gap of CH ₃ NH ₃ PbI ₃ Stabilized with PMMA: A Modulated Surface Photovoltage Study. Journal of Physical Chemistry C, 2015, 119, 23968-23972.	3.1	59
68	27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells. Solar Rrl, 2021, 5, 2100244.	5.8	59
69	Solution of the ZnO/p contact problem in a-Si:H solar cells. Solar Energy Materials and Solar Cells, 1996, 41-42, 485-492.	6.2	58
70	Metastable Defect Formation at Microvoids Identified as a Source of Light-Induced Degradation in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>a</mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>Si</mml:mi><mml:math>. Physical Review Letters, 2014, 112,</mml:math></mml:mrow></mml:math>	no 7: 8/mm	l:m 807> < mml:n
71	066403. High open circuit voltages in pin-type perovskite solar cells through strontium addition. Sustainable Energy and Fuels, 2019, 3, 550-563.	4.9	57
72	Impact of the transparent conductive oxide work function on injection-dependent a-Si:H/c-Si band bending and solar cell parameters. Journal of Applied Physics, 2013, 113, .	2.5	55

#	Article	IF	CITATIONS
73	High deposition rate aluminium-doped zinc oxide films with highly efficient light trapping for silicon thin film solar cells. Thin Solid Films, 2008, 516, 1242-1248.	1.8	53
74	Field Effect Passivation in Perovskite Solar Cells by a LiF Interlayer. Advanced Energy Materials, 2022, 12, .	19.5	53
7 5	Upscaling of texture-etched zinc oxide substrates for silicon thin film solar cells. Thin Solid Films, 2001, 392, 327-333.	1.8	52
76	Influence of excitation frequency, temperature, and hydrogen dilution on the stability of plasma enhanced chemical vapor deposited a-Si:H. Journal of Applied Physics, 1998, 84, 3949-3953.	2.5	50
77	Polycrystalline silicon heterojunction thin-film solar cells on glass exhibiting 582mV open-circuit voltage. Solar Energy Materials and Solar Cells, 2013, 115, 7-10.	6.2	50
78	Conversion efficiency and process stability improvement of electron beam crystallized thin film silicon solar cells on glass. Solar Energy Materials and Solar Cells, 2014, 123, 13-16.	6.2	49
79	High rate direct current magnetron sputtered and texture-etched zinc oxide films for silicon thin film solar cells. Thin Solid Films, 2008, 516, 4628-4632.	1.8	48
80	Microstructure and photovoltaic performance of polycrystalline silicon thin films on temperature-stable ZnO:Al layers. Journal of Applied Physics, 2009, 106, .	2.5	47
81	Silicon Thin-Film Solar Cells on Glass With Open-Circuit Voltages Above 620 mV Formed by Liquid-Phase Crystallization. IEEE Journal of Photovoltaics, 2014, 4, 1496-1501.	2.5	47
82	Valence band alignment and hole transport in amorphous/crystalline silicon heterojunction solar cells. Applied Physics Letters, 2015, 107, 013902.	3.3	47
83	Oxygen and nitrogen impurities in microcrystalline silicon deposited under optimized conditions: Influence on material properties and solar cell performance. Journal of Applied Physics, 2009, 105, 074509.	2.5	44
84	Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%. Solar Energy Materials and Solar Cells, 2018, 174, 187-195.	6.2	43
85	Interface Molecular Engineering for Laminated Monolithic Perovskite/Silicon Tandem Solar Cells with 80.4% Fill Factor. Advanced Functional Materials, 2019, 29, 1901476.	14.9	43
86	Cs <i>>_x</i> FA _{1â€"<i>x</i>} Pb(I _{1â€"<i>y</i>} Br <i>_y</i>) _{3 Perovskite Compositions: the Appearance of Wrinkled Morphology and its Impact on Solar Cell Performance. Journal of Physical Chemistry C, 2018, 122, 17123-17135.}	3	42
87	Hybrid Organic/Inorganic Thinâ€Film Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency. Advanced Materials, 2015, 27, 1262-1267.	21.0	40
88	Liquid phase crystallized silicon on glass: Technology, material quality and back contacted heterojunction solar cells. Japanese Journal of Applied Physics, 2016, 55, 04EA04.	1.5	40
89	A new concept for mass production of large area thin-film silicon solar cells on glass. Thin Solid Films, 2006, 502, 300-305.	1.8	39
90	Temperature stability of ZnO:Al film properties for poly-Si thin-film devices. Applied Physics Letters, 2007, 91, 241911.	3.3	39

#	Article	IF	Citations
91	Improving the electrical and optical properties of DC-sputtered ZnO:Al by thermal post deposition treatments. Thin Solid Films, 2012, 520, 4203-4207.	1.8	39
92	Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass. Solar Energy Materials and Solar Cells, 2015, 135, 2-7.	6.2	39
93	Determination of the complex refractive index and optical bandgap of CH3NH3PbI3 thin films. Journal of Applied Physics, 2017, 121, .	2.5	38
94	Accelerated interface defect removal in amorphous/crystalline silicon heterostructures using pulsed annealing and microwave heating. Applied Physics Letters, 2009, 95, .	3.3	37
95	Analysis of photo-current potentials and losses in thin film crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2015, 143, 457-466.	6.2	37
96	The Influence of ITO Dopant Density on J-V Characteristics of Silicon Heterojunction Solar Cells: Experiments and Simulations. Energy Procedia, 2015, 77, 725-732.	1.8	37
97	Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates. Solar Energy Materials and Solar Cells, 2004, , .	6.2	36
98	Nanocrystalline silicon emitter optimization for Si-HJ solar cells: Substrate selectivity and CO ₂ plasma treatment effect. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1532958.	1.8	36
99	Recent developments in amorphous siliconâ€based solar cells. Physica Status Solidi (B): Basic Research, 1996, 194, 41-53.	1.5	35
100	Valence band offset in heterojunctions between crystalline silicon and amorphous silicon (sub)oxides (a-SiOx:H, 0 & amp;lt; x & amp;lt; 2). Applied Physics Letters, 2015, 106, .	3.3	34
101	Towards monocrystalline silicon thin films grown on glass by liquid phase crystallization. Solar Energy Materials and Solar Cells, 2015, 140, 86-91.	6.2	34
102	Influence of Hydrogen Plasma on the Defect Passivation of Polycrystalline Si Thin Film Solar Cells. Plasma Processes and Polymers, 2009, 6, S36.	3.0	33
103	Quadruple-junction solar cells and modules based on amorphous and microcrystalline silicon with high stable efficiencies. Japanese Journal of Applied Physics, 2015, 54, 08KB03.	1.5	33
104	Diffusion length of photo-generated charge carriers in layers and powders of CH3NH3PbI3 perovskite. Applied Physics Letters, 2016, 109, .	3.3	33
105	Transient depletion of source gases during materials processing: a case study on the plasma deposition of microcrystalline silicon. New Journal of Physics, 2007, 9, 280-280.	2.9	32
106	Growth of polycrystalline silicon on glass for thin-film solar cells. Journal of Crystal Growth, 2010, 312, 1277-1281.	1.5	32
107	Impact of Fermi-level dependent defect equilibration on Voc of amorphous/crystalline silicon heterojunction solar cells. Energy Procedia, 2011, 8, 282-287.	1.8	32
108	Achievements and challenges in thin film silicon module production. Solar Energy Materials and Solar Cells, 2013, 119, 196-203.	6.2	32

#	Article	IF	CITATIONS
109	Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy. Scientific Reports, 2016, 6, 34675.	3.3	32
110	Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer. Scientific Reports, 2017, 7, 873.	3.3	32
111	Microcrystalline silicon deposition: Process stability and process control. Thin Solid Films, 2007, 515, 7455-7459.	1.8	31
112	Crystallization kinetics in electron-beam evaporated amorphous silicon on ZnO:Al-coated glass for thin film solar cells. Applied Physics Letters, 2009, 95, 101902.	3.3	31
113	Combined multifrequency EPR and DFT study of dangling bonds in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>a</mml:mi></mml:math> -Si:H. Physical Review B, 2011, 84, .	3.2	31
114	PECVD-AlOx/SiNx Passivation Stacks on Silicon: Effective Charge Dynamics and Interface Defect State Spectroscopy. Energy Procedia, 2014, 55, 845-854.	1.8	31
115	Nano-emitting Heterostructures Violate Optical Reciprocity and Enable Efficient Photoluminescence in Halide-Segregated Methylammonium-Free Wide Bandgap Perovskites. ACS Energy Letters, 2021, 6, 419-428.	17.4	31
116	The role of plasma induced substrate heating during high rate deposition of microcrystalline silicon solar cells. Thin Solid Films, 2006, 511-512, 562-566.	1.8	30
117	Microcrystalline silicon solar cells with an open-circuit voltage above 600mV. Applied Physics Letters, 2007, 90, 183504.	3.3	30
118	Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer. Progress in Photovoltaics: Research and Applications, 2007, 15, 291-301.	8.1	30
119	Development of a rapid thermal annealing process for polycrystalline silicon thin-film solar cells on glass. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 329-332.	3.5	30
120	PECVD-AlOx/SiNx passivation stacks on wet chemically oxidized silicon: Constant voltage stress investigations of charge dynamics and interface defect states. Solar Energy Materials and Solar Cells, 2015, 135, 49-56.	6.2	30
121	Polycrystalline silicon thin films by high-rate electronbeam evaporation for photovoltaic applications – Influence of substrate texture and temperature. Energy Procedia, 2011, 10, 61-65.	1.8	29
122	Atomic Structure of Interface States in Silicon Heterojunction Solar Cells. Physical Review Letters, 2013, 110, 136803.	7.8	29
123	Influence of the total gas flow on the deposition of microcrystalline silicon solar cells. Thin Solid Films, 2004, 451-452, 466-469.	1.8	28
124	Hard x-ray photoelectron spectroscopy study of the buried Si/ZnO thin-film solar cell interface: Direct evidence for the formation of Si–O at the expense of Zn-O bonds. Applied Physics Letters, 2011, 99, .	3.3	28
125	Directional growth and crystallization of silicon thin films prepared by electron-beam evaporation on oblique and textured surfaces. Journal of Crystal Growth, 2013, 367, 126-130.	1.5	28
126	Sinusoidal nanotextures for light management in silicon thin-film solar cells. Nanoscale, 2016, 8, 8722-8728.	5.6	28

#	Article	IF	Citations
127	Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 9172-9181.	8.0	28
128	Improvement in stabilized efficiency of a-Si:H solar cells through optimized p/i-interface layers. Solar Energy Materials and Solar Cells, 1996, 41-42, 475-483.	6.2	27
129	Planar rear emitter back contact silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1900-1903.	6.2	27
130	Light trapping in thin-film silicon solar cells by nano-textured interfaces. , 2006, 6197, 619701.		26
131	Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 855-858.	6.2	26
132	PECVD Intermediate and Absorber Layers Applied in Liquid-Phase Crystallized Silicon Solar Cells on Glass Substrates. IEEE Journal of Photovoltaics, 2014, 4, 1343-1348.	2.5	26
133	Preferential {100} grain orientation in 10 micrometer-thick laser crystallized multicrystalline silicon on glass. Thin Solid Films, 2015, 576, 68-74.	1.8	26
134	Silicon Heterojunction Solar Cells With Nanocrystalline Silicon Oxide Emitter: Insights Into Charge Carrier Transport. IEEE Journal of Photovoltaics, 2015, 5, 1601-1605.	2.5	25
135	Optimization of the post-deposition annealing process of high-mobility In2O3:H for photovoltaic applications. Thin Solid Films, 2016, 599, 78-83.	1.8	25
136	Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass. Scientific Reports, 2017, 7, 2658.	3.3	25
137	Optical characterization and bandgap engineering of flat and wrinkle-textured FA0.83Cs0.17Pb(I1– <i>x</i> Br <i>x</i>)3 perovskite thin films. Journal of Applied Physics, 2018, 123, .	2.5	25
138	Plasma emission diagnostics for the transition from microcrystalline to amorphous silicon solar cells. Solar Energy Materials and Solar Cells, 2005, 87, 795-805.	6.2	24
139	Influence of deep defects on device performance of thin-film polycrystalline silicon solar cells. Applied Physics Letters, 2012, 101, 123904.	3.3	24
140	The growth of microcrystalline silicon oxide thin films studied by in situ plasma diagnostics. Applied Physics Letters, 2013, 102, 051906.	3.3	24
141	Improved conversion efficiency of aâ€Si:H/Âμcâ€Si:H thinâ€film solar cells by using annealed Alâ€doped zinc oxide as front electrode material. Progress in Photovoltaics: Research and Applications, 2014, 22, 1285-1291.	8.1	24
142	High mobility In2O3:H as contact layer for a-Si:H/c-Si heterojunction and \hat{l}_4 c-Si:H thin film solar cells. Thin Solid Films, 2015, 594, 316-322.	1.8	24
143	Advantageous light management in Cu(In,Ga)Se2 superstrate solar cells. Solar Energy Materials and Solar Cells, 2016, 150, 76-81.	6.2	24
144	Nondestructive Probing of Perovskite Silicon Tandem Solar Cells Using Multiwavelength Photoluminescence Mapping. IEEE Journal of Photovoltaics, 2017, 7, 1081-1086.	2.5	24

#	Article	IF	Citations
145	Large-grained poly-Si films on ZnO:Al coated glass substrates. Thin Solid Films, 2008, 516, 6869-6872.	1.8	22
146	Influence of Barrier and Doping Type on the Open-Circuit Voltage of Liquid Phase-Crystallized Silicon Thin-Film Solar Cells on Glass. IEEE Journal of Photovoltaics, 2015, 5, 1001-1005.	2.5	22
147	Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells. Journal of Applied Physics, 2015, 117, .	2.5	22
148	Structure of PECVD Si:H films for solar cell applications. Solar Energy Materials and Solar Cells, 2003, 77, 125-143.	6.2	21
149	Ultrathin SiO2layers on Si(111): preparation, interface gap states and the influence of passivation. Nanotechnology, 2008, 19, 424020.	2.6	21
150	Nanophotonic light trapping in 3-dimensional thin-film silicon architectures. Optics Express, 2013, 21, A42.	3.4	21
151	Amorphous and Microcrystalline Silicon Based Solar Cells and Modules on Textured Zinc Oxide Coated Glass Substrates. Materials Research Society Symposia Proceedings, 2003, 762, 311.	0.1	20
152	Characterization and control of crystal nucleation in amorphous electron beam evaporated silicon for thin film solar cells. Journal of Applied Physics, 2011, 110, 063530.	2.5	20
153	Impact of a-Si:H hydrogen depth profiles on passivation properties in a-Si:H/c-Si heterojunctions. Thin Solid Films, 2012, 520, 4439-4444.	1.8	20
154	Revisiting the Determination of the Valence Band Maximum and Defect Formation in Halide Perovskites for Solar Cells: Insights from Highly Sensitive Near–UV Photoemission Spectroscopy. ACS Applied Materials & Determination (2011), 13, 43540-43553.	8.0	20
155	Large-area 2D periodic crystalline silicon nanodome arrays on nanoimprinted glass exhibiting photonic band structure effects. Nanotechnology, 2012, 23, 135302.	2.6	19
156	Impact of dislocations and dangling bond defects on the electrical performance of crystalline silicon thin films. Applied Physics Letters, $2014,105,.$	3.3	19
157	Crystalline silicon on glass—interface passivation and absorber material quality. Progress in Photovoltaics: Research and Applications, 2016, 24, 1499-1512.	8.1	19
158	Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy. Thin Solid Films, 2008, 516, 4633-4638.	1.8	18
159	Largeâ€nrea fabrication of equidistant freeâ€standing Si crystals on nanoimprinted glass. Physica Status Solidi - Rapid Research Letters, 2011, 5, 376-378.	2.4	18
160	Chemical speciation at buried interfaces in high-temperature processed polycrystalline silicon thin-film solar cells on ZnO:Al. Journal of Applied Physics, 2013, 113, .	2.5	18
161	An improved siliconâ€oxideâ€based intermediateâ€reflector for micromorph solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2145-2148.	0.8	17
162	Implications of TCO Topography on Intermediate Reflector Design for a-Si/l̂¹/₄c-Si Tandem Solar Cellsâ€"Experiments and Rigorous Optical Simulations. IEEE Journal of Photovoltaics, 2014, 4, 10-15.	2.5	17

#	Article	IF	Citations
163	Solutionâ€Processed Crystalline Silicon Thinâ€Film Solar Cells. Advanced Materials Interfaces, 2014, 1, 1300046.	3.7	17
164	Interdigitated backâ€contact heterojunction solar cell concept for liquid phase crystallized thinâ€film silicon on glass. Progress in Photovoltaics: Research and Applications, 2016, 24, 716-724.	8.1	17
165	Thin-film silicon solar cells with grating couplers – An experimental and numerical study. Journal of Non-Crystalline Solids, 2006, 352, 1949-1952.	3.1	16
166	GIXRF–NEXAFS investigations on buried ZnO/Si interfaces: A first insight in changes of chemical states due to annealing of the specimen. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 370-373.	1.4	16
167	Hydrogen distribution in the vicinity of dangling bonds in hydrogenated amorphous silicon (aâ€Si:H). Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 552-555.	1.8	16
168	Electrical detection of electron-spin-echo envelope modulations in thin-film silicon solar cells. Physical Review B, 2011, 84, .	3.2	16
169	Direct growth of periodic silicon nanostructures on imprinted glass for photovoltaic and photonic applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2079-2082.	0.8	16
170	Identification of intraâ€grain and grain boundary defects in polycrystalline Si thin films by electron paramagnetic resonance. Physica Status Solidi - Rapid Research Letters, 2013, 7, 959-962.	2.4	16
171	Nanocrystalline Silicon Oxide Emitters for Silicon Hetero Junction Solar Cells. Energy Procedia, 2015, 77, 304-310.	1.8	16
172	Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration. Solar Energy Materials and Solar Cells, 2002, 74, 469-478.	6.2	15
173	Origin of preferential grain orientation in excimer laser-induced crystallization of silicon thin films. Applied Physics Letters, 2012, 100, .	3.3	15
174	Technological status of polycrystalline silicon thin-film solar cells on glass. Solar Energy Materials and Solar Cells, 2013, 119, 306-308.	6.2	15
175	Photodetectors based on amorphous and microcrystalline silicon. Thin Solid Films, 2007, 515, 7522-7525.	1.8	14
176	Electrical detection of electron spin resonance in microcrystalline silicon pin solar cells. Philosophical Magazine, 2009, 89, 2655-2676.	1.6	14
177	Defect annealing processes for polycrystalline silicon thin-film solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 670-675.	3.5	14
178	Analysis of Urbach-like absorption tails in thermally treated ZnO:Al thin films. Applied Physics Letters, 2013, 103, 192108.	3.3	14
179	Liquid-Phase Crystallized Silicon Solar Cells on Glass: Increasing the Open-Circuit Voltage by Optimized Interlayers for n- and p-Type Absorbers. IEEE Journal of Photovoltaics, 2015, 5, 1757-1761.	2.5	14
180	Back- and Front-side Texturing for Light-management in Perovskite / Silicon-heterojunction Tandem Solar Cells. Energy Procedia, 2016, 102, 43-48.	1.8	14

#	Article	IF	Citations
181	Architectures for scalable integrated photo driven catalytic devices-A concept study. International Journal of Hydrogen Energy, 2016, 41, 20823-20831.	7.1	14
182	Impact of Dielectric Layers on Liquid-Phase Crystallized Silicon Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 30-37.	2.5	14
183	Microcrystalline silicon thin film solar modules on glass. Solar Energy Materials and Solar Cells, 2006, 90, 3047-3053.	6.2	13
184	Influence of contaminations on the performance of thin-film silicon solar cells prepared after in situ reactor plasma cleaning. Thin Solid Films, 2008, 516, 4639-4644.	1.8	13
185	Recombination and transport in microcrystalline pin solar cells studied with pulsed electrically detected magnetic resonance. Journal of Non-Crystalline Solids, 2008, 354, 2411-2415.	3.1	13
186	Solution-processed amorphous silicon surface passivation layers. Applied Physics Letters, 2014, 105, 122113.	3.3	13
187	Honeycomb micro-textures for light trapping in multi-crystalline silicon thin-film solar cells. Optics Express, 2018, 26, A498.	3.4	13
188	Evidence of PbI ₂ -Containing Debris Upon P2 Nanosecond Laser Patterning of Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1244-1251.	2.5	13
189	Hidden parameters in the plasma deposition of microcrystalline silicon solar cells. Journal of Materials Research, 2007, 22, 1767-1774.	2.6	12
190	Organic photovoltaic cells with interdigitated structures based on pentacene nanocolumn arrays. Organic Electronics, 2011, 12, 2180-2184.	2.6	12
191	The silicon/zinc oxide interface in amorphous silicon-based thin-film solar cells: Understanding an empirically optimized contact. Applied Physics Letters, 2013, 103, .	3.3	12
192	Comparison of TMB and B2H6 as Precursors for Emitter Doping in High Efficiency Silicon Hetero Junction Solar Cells. Energy Procedia, 2014, 60, 123-128.	1.8	12
193	Optimized Metallization for Interdigitated Back Contact Silicon Heterojunction Solar Cells. Solar Rrl, 2017, 1, 1700021.	5.8	12
194	Progress in and potential of liquid phase crystallized silicon solar cells. Solar Energy, 2018, 175, 75-83.	6.1	12
195	Toward High Solar Cell Efficiency with Low Material Usage: 15% Efficiency with 14 Î⅓m Polycrystalline Silicon on Glass. Solar Rrl, 2020, 4, 2000058.	5.8	12
196	Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface. Applied Physics Letters, 2010, 97, 072105.	3.3	11
197	Challenges and opportunities of electron beam evaporation in the preparation of poly-Si thin film solar cells. , 2010, , .		11
198	Progress in Point Contacted Rear Silicon Heterojunction Solar Cells. Energy Procedia, 2012, 27, 116-121.	1.8	11

#	Article	IF	Citations
199	Equilibrium shapes of polycrystalline silicon nanodots. Journal of Applied Physics, 2014, 115, 074304.	2.5	11
200	<i>In situ</i> graphene doping as a route toward efficient perovskite tandem solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1989-1996.	1.8	11
201	Tailored Nanostructures for Light Management in Silicon Heterojunction Solar Cells. Solar Rrl, 2020, 4, 2000484.	5.8	11
202	Highâ€Throughput Aging System for Parallel Maximum Power Point Tracking of Perovskite Solar Cells. Energy Technology, 2022, 10, .	3.8	11
203	Very thin, highlyâ€conductive ZnO:Al front electrode on textured glass as substrate for thinâ€film silicon solar cells. Physica Status Solidi - Rapid Research Letters, 2014, 8, 44-47.	2.4	10
204	Interface passivation of liquidâ€phase crystallized silicon on glass studied with highâ€frequency capacitance–voltage measurements. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1697-1704.	1.8	10
205	Wafer Surface Tuning for a-Si:H/ \hat{l} /4c-Si:H/c-Si Triple Junction Solar Cells for Application in Water Splitting. Energy Procedia, 2016, 102, 126-135.	1.8	10
206	Screen-Printed Metallization Concepts for Large-Area Back-Contact Back-Junction Silicon Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 374-383.	2.5	10
207	Interface Engineering for Liquidâ€Phase Crystallizedâ€Silicon Solar Cells on Glass. Solar Rrl, 2017, 1, 1700015.	5.8	10
208	Combining tailor-made textures for light in-coupling and light trapping in liquid phase crystallized silicon thin-film solar cells. Optics Express, 2017, 25, A467.	3.4	10
209	All-Thin-Film Tandem Cells Based on Liquid Phase Crystallized Silicon and Perovskites. IEEE Journal of Photovoltaics, 2019, 9, 621-628.	2.5	10
210	Material Aspects of Reactively MF-Sputtered Zinc Oxide for TCO Application in Silicon Thin Film Solar Cells. Materials Research Society Symposia Proceedings, 2003, 762, 7111.	0.1	10
211	Hybrid Perovskite Degradation from an Optical Perspective: A Spectroscopic Ellipsometry Study from the Deep Ultraviolet to the Middle Infrared. Advanced Optical Materials, 2022, 10, 2101553.	7.3	10
212	Microcrystalline silicon solar cells prepared by 13.56 MHz PECVD at high growth rates: Solar cell and material properties. Materials Research Society Symposia Proceedings, 2001, 664, 2551.	0.1	9
213	Microcrystalline Silicon Solar Cells: Theory and Diagnostic Tools. , 2006, , .		9
214	Planar rear emitter back contact amorphous/crystalline silicon heterojunction solar cells (RECASH /) Tj ETQq0 0	0 rgBT /O\	erlgck 10 Tf 5
215	Rigorous optical simulation of light management in crystalline silicon thin film solar cells with rough interface textures. Proceedings of SPIE, $2011, \ldots$	0.8	9
216	Approach for a Simplified Fabrication Process for IBC-SHJ Solar Cells with High Fill Factors. Energy Procedia, 2013, 38, 732-736.	1.8	9

#	Article	IF	Citations
217	Design of ZnO:Al films with optimized surface texture for silicon thin-film solar cells., 2006,,.		8
218	High-forward-bias transport mechanism in a-Si:H/c-Si heterojunction solar cells. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 657-660.	1.8	8
219	Contact resistivity measurements of the buried Si–ZnO:Al interface of polycrystalline silicon thin-film solar cells on ZnO:Al. Thin Solid Films, 2011, 520, 1268-1273.	1.8	8
220	Large area PECVD of aâ€6i:H/aâ€6i:H tandem solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2982-2985.	0.8	8
221	Optical characterization of high mobility polycrystalline ZnO:Al films. Proceedings of SPIE, 2012, , .	0.8	8
222	Photoconductivity and optical properties of silicon coated by thin TiO ₂ film <i>in situ</i> doped by Au nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 687-694.	1.8	8
223	Properties of Liquid Phase Crystallized Interdigitated Back-contact Solar Cells on Glass. Energy Procedia, 2015, 77, 487-492.	1.8	8
224	Grazing incidence X-ray fluorescence analysis of buried interfaces in periodically structured crystalline silicon thin-film solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 529-534.	1.8	8
225	Passivation at the interface between liquidâ€phase crystallized silicon and silicon oxynitride in thin film solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 515-524.	8.1	8
226	Periodic and Random Substrate Textures for Liquid-Phase Crystallized Silicon Thin-Film Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 85-90.	2.5	8
227	Investigation of Structural and Electronic Properties of CH3NH3PbI3 Stabilized by Varying Concentrations of Poly(Methyl Methacrylate) (PMMA). Coatings, 2017, 7, 115.	2.6	8
228	Light harvesting architectures for electron beam evaporated solid phase crystallized Si thin film solar cells: Statistical and periodic approaches. Journal of Non-Crystalline Solids, 2012, 358, 2303-2307.	3.1	7
229	An effective medium approach for modeling polycrystalline silicon thin film solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 152-160.	6.2	7
230	Potential of high-mobility sputtered zinc oxide as front contact for high efficiency thin film silicon solar cells. Thin Solid Films, 2014, 555, 138-142.	1.8	7
231	Analysis of Local Minority Carrier Diffusion Lengths in Liquid-Phase Crystallized Silicon Thin-Film Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 32-36.	2.5	7
232	Texture etched ZnO:Al films as front contact and back reflector in amorphous silicon p-i-n and n-i-p solar cells. , 0 , , .		6
233	High Rate Deposition of Microcrystalline Silicon Solar Cells Using 13.56 MHz PECVD – Prerequisites and Limiting Factors. Materials Research Society Symposia Proceedings, 2002, 715, 2651.	0.1	6
234	Chemical interaction at the buried silicon/zinc oxide thin-film solar cell interface as revealed by hard X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 309-313.	1.7	6

#	Article	IF	CITATIONS
235	Advanced microhole arrays for light trapping in thin film silicon solar cells. Solar Energy Materials and Solar Cells, 2014, 125, 298-304.	6.2	6
236	Electronic structure of indium-tungsten-oxide alloys and their energy band alignment at the heterojunction to crystalline silicon. Applied Physics Letters, 2018, 112, .	3.3	6
237	Influence of the precursor layer composition and deposition processes on the electronic quality of liquid phase crystallized silicon absorbers. Progress in Photovoltaics: Research and Applications, 2018, 26, 524-532.	8.1	6
238	Structural investigations of silicon nanostructures grown by self-organized island formation for photovoltaic applications. Applied Physics A: Materials Science and Processing, 2012, 108, 719-726.	2.3	5
239	Dangling bonds in amorphous silicon investigated by multifrequency EPR. Journal of Non-Crystalline Solids, 2012, 358, 2067-2070.	3.1	5
240	A novel light trapping concept for liquid phase crystallized poly-Si thin-film solar cells on periodically nanoimprinted glass substrates. , $2013, \ldots$		5
241	Laser firing in silicon heterojunction interdigitated back contact architecture for low contact resistance. Solar Energy Materials and Solar Cells, 2019, 203, 110201.	6.2	5
242	High rate deposition of microcrystalline silicon solar cells using 13.56 MHz PECVD., 0,,.		4
243	Low temperature nanoscopic kinetics of hydrogen plasma-enhanced crystallization of a-Si:H films. Journal of Applied Physics, 2003, 94, 443-453.	2.5	4
244	Deposition and properties of microcrystalline silicon from chlorosilane precursor gases. Journal of Non-Crystalline Solids, 2004, 338-340, 147-150.	3.1	4
245	Etching of a-Si:H on c-Si absorber monitored by in situ photoluminescence measurements. Energy Procedia, 2011, 8, 269-274.	1.8	4
246	Comparison of growth methods for Si/SiO2 nanostructures as nanodot hetero-emitters for photovoltaic applications. Journal of Non-Crystalline Solids, 2012, 358, 2253-2256.	3.1	4
247	p-Type a-Si:H/ZnO:Al and î¼c-Si:H/ZnO:Al Thin-Film Solar Cell Structuresâ€"A Comparative Hard X-Ray Photoelectron Spectroscopy Study. IEEE Journal of Photovoltaics, 2013, 3, 483-487.	2.5	4
248	FEM-based optical modeling of silicon thin-film tandem solar cells with randomly textured interfaces in 3D. Proceedings of SPIE, $2013, \ldots$	0.8	4
249	Field-effect passivation and degradation analyzed with photoconductance decay measurements. Applied Physics Letters, 2014, 104, 193504.	3.3	4
250	EMIL: The energy materials in situ laboratory Berlin. , 2014, , .		4
251	Nanoimprint-textured Glass Superstrates for Light Trapping in Crystalline Silicon thin-film Solar Cells. Energy Procedia, 2015, 84, 118-126.	1.8	4
252	Enhanced stability of P3HT/polyâ€crystalline Si thin film hybrid solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1904-1908.	1.8	4

#	Article	IF	Citations
253	Optimization of PECVD process for ultra-thin tunnel SiO<inf>x</inf> film as passivation layer for silicon heterojunction solar cells. , 2016 , , .		4
254	ITO-free metallization for interdigitated back contact silicon heterojunction solar cells. Energy Procedia, 2017, 124, 379-383.	1.8	4
255	Aluminium metallisation for interdigitated back-contact silicon heterojunction solar cells. Japanese Journal of Applied Physics, 2017, 56, 08MB22.	1.5	4
256	Liquid phase crystallized silicon – A holistic absorber quality assessment. Solar Energy Materials and Solar Cells, 2018, 181, 2-8.	6.2	4
257	Detailed accounting for quantum efficiency and optical losses in a-Si:H based solar cells. , 0, , .		3
258	Production Equipment for Large Area Deposition of Amorphous and Microcrystalline Silicon Thin-Film Solar Cells., 2006, , .		3
259	The influence of space charge regions on effective charge carrier lifetime in thin films and resulting opportunities for materials characterization. Journal of Applied Physics, 2013, 113, 044510.	2.5	3
260	Light trapping in polycrystalline silicon thin-film solar cells based on liquid phase crystallization on textured substrates. , 2013 , , .		3
261	ZnO:Al with tuned properties for photovoltaic applications: thin layers and high mobility material. Proceedings of SPIE, 2013, , .	0.8	3
262	Photoluminescence study of polycrystalline silicon thin films prepared by liquid and solid phase crystallization. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1652-1656.	1.8	3
263	Analysis of absorption enhancement in tailorâ€made periodic polycrystalline silicon microarrays. Physica Status Solidi - Rapid Research Letters, 2013, 7, 1045-1049.	2.4	3
264	Crack formation and Zn diffusion in high-temperature processed poly-Si/ZnO:Al stacks. Thin Solid Films, 2014, 566, 83-87.	1.8	3
265	Improvement of the homogeneity of high mobility In ₂ 0 ₃ :H films by sputtering through a mesh electrode studied by Monte Carlo simulation and thin film analysis. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2310-2316.	1.8	3
266	NIEL DOSE Analysis on Triple Junction Cells 30% Efficient and Related Single Junctions., 2017,,.		3
267	Benefits of a thermal drift during atomic layer deposition of Al2O3 for C-Si passivation. , 2017, , .		3
268	Analysis of Surface Passivation and Laser Firing on Thin-Film Silicon Solar Cells Via Light-Beam Induced Current. IEEE Journal of Photovoltaics, 2020, 10, 1246-1253.	2.5	3
269	Flexible a-Si/μc-Si Tandem Modules in the Helianthos Project. , 2006, , .		2
270	Stability of Thin-Film Silicon Solar Cells. , 2006, , .		2

#	Article	IF	Citations
271	Polycrystalline Silicon Thin-film Solar Cells on ZnO:Al Coated Glass. Materials Research Society Symposia Proceedings, 2008, 1066, 1.	0.1	2
272	Band alignment at amorphous/crystalline silicon hetero-interfaces. Materials Research Society Symposia Proceedings, 2011, 1321, 323.	0.1	2
273	Optical properties and Limits of a Large-Area Periodic Nanophotonic Light Trapping Design for Polycrystalline Silicon Thin Film Solar Cells. Materials Research Society Symposia Proceedings, 2013, 1493, 59-64.	0.1	2
274	Comparative study of backside reflectors on a-Si:H/ $\hat{A}\mu$ c-Si:H thin film solar cells. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2078-2081.	1.8	2
275	A comparison of scattering and non-scattering anti-reflection designs for back contacted polycrystalline thin film silicon solar cells in superstrate configuration. , 2014, , .		2
276	Advanced Metallization Concepts for p-type Silicon Metal-Wrap-Through (MWT) Solar Cells. Energy Technology, 2014, 2, 34-42.	3.8	2
277	Liquid phase crystallized silicon solar cells on glass: Material quality and device design. , 2015, , .		2
278	Evaluation of screen-printed metallization concepts for large-area BC-BJ solar cells. , 2015, , .		2
279	Optical Properties of Smooth Anti-reflective Three-dimensional Textures for Silicon Thin-film Solar Cells. Energy Procedia, 2016, 102, 27-35.	1.8	2
280	Observation of Pbl <inf> 2</inf> Residuals after P2 Nanosecond Laser Ablation of Perovskite Absorber Layers. , 2018, , .		2
281	Large area deposition of intrinsic microcrystalline silicon for thin film solar cells. , 0, , .		1
282	Cross-section of Si:H solar cells prepared by PECVD at the edge of crystallization. Journal of Non-Crystalline Solids, 2002, 299-302, 1167-1172.	3.1	1
283	Silicontetrachloride based microcrystalline silicon for application in thin film silicon solar cells. Thin Solid Films, 2004, 451-452, 280-284.	1.8	1
284	Crystallization Kinetics in High-rate Electron Beam Evaporated Poly-Si Thin Film Solar Cells on ZnO:Al. Materials Research Society Symposia Proceedings, 2010, 1245, 1.	0.1	1
285	Modification of light scattering properties of boron doped zinc oxide grown by Low Pressure Chemical Vapour Deposition using wet chemical etching. , 2010, , .		1
286	3D optical modeling of thin-film a-Si/µc-Si tandem solar cells with random textured interfaces using FEM. , 2012, , .		1
287	Correlation between structural and opto-electronic characteristics of crystalline Si microhole arrays for photonic light management. Journal of Applied Physics, 2013, 114, 173513.	2.5	1
288	Micro-contacting of single and periodically arrayed columnar silicon structures by focused ion beam techniques. Applied Physics Letters, 2014, 104, 242104.	3.3	1

#	Article	IF	Citations
289	Material properties of high-mobility TCOs and application to solar cells. Proceedings of SPIE, 2014, , .	0.8	1
290	Silicon heterojunction solar cells with nanocrystalline Silicon Oxide emitter: Insights into charge carrier transport. , $2015, \ldots$		1
291	Imprinted Nanostructures for Light Management in Crystalline Silicon Thin-Film Solar Cells on Glass. , 2016, , .		1
292	Backside contacted solar cells with heterojunction emitters and laser fired absorber contacts for crystalline silicon on glass. , $2016, , .$		1
293	Facing the challenge of liquid phase crystallizing silicon on textured glass substrates. , 2016, , .		1
294	Analysis of local minority carrier diffusion lengths in liquid phase crystallized silicon thin-film solar cells. , $2016, \ldots$		1
295	Influence of the Frontside Charge Inversion Layer on the Minority Carrier Collection in Backside Contacted Liquid Phase Crystallized Silicon on Glass Solar Cells. Solar Rrl, 2017, 1, 1700100.	5.8	1
296	Mitigating optical losses in crystalline silicon thin-film solar cells on glass. , 2018, , .		1
297	Passivation of Liquidâ€Phase Crystallized Silicon With PECVDâ€SiN <i>_x</i> and PECVDâ€SiN <i>_x</i> SiD <i>_x</i> Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800239.	1.8	1
298	Analysis of Surface Passivation and Laser Firing via Light-Beam Induced Current Measurements. , 2019, , .		1
299	The Investigation of Crystallization of a-Si Films Deposited on Different Orientations by Solid Phase Epitaxy Process. Praktische Metallographie/Practical Metallography, 2009, 46, 537-551.	0.3	1
300	Improved Light Management in Crystalline Silicon Thin-Film Solar Cells by Advanced Nano-Texture Fabrication. , $2017, \dots$		1
301	Dýnnschichtsolarzellen. Vakuum in Forschung Und Praxis, 2000, 12, 306-312.	0.1	0
302	Texture-etched zinc oxide substrates for silicon thin film solar cells-from laboratory size to large areas. , 2000, , .		0
303	Polycrystalline silicon thin-film solar cells on ZnO:Al-coated glass substrates. , 2009, , .		0
304	Crystal nucleation in electron-beam evaporated amorphous silicon on ZnO:Al- and SiN-coated glass for thin film solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	0
305	Melting and solidification behavior of laser-crystallized silicon thin-films studied by transient conductance measurements. Journal of Non-Crystalline Solids, 2012, 358, 2159-2161.	3.1	0
306	Nanophotonic light trapping in polycrystalline silicon thin-film solar cells using periodically nanoimprint-structured glass substrates. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	CITATIONS
307	Optical analysis of subbandgap defects in polycrystalline silicon thin film solar cells. , 2013, , .		О
308	Structural properties of Si/SiO $<$ sub $>$ 2 $<$ /sub $>$ nanostructures grown by decomposition of substoichiometric SiO $<$ sub $>$ $<$ i> $>$ $<$ /sub $>$ 0 $<$ 1> $>$ $<$ 1/sub $>$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$ 10 $<$	1.8	0
309	Investigation of Band Tailing in Sputtered ZnO:Al Thin Films Regarding Structural Properties and Impurities. Materials Research Society Symposia Proceedings, 2014, 1699, 1.	0.1	0
310	Annealing related changes in nearâ€edge absorption and structural properties of Alâ€doped ZnO thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1468-1471.	0.8	0
311	Angle-Resolved Reflectivity Analysis of Textured Substrates for Liquid-Phase Crystallized Silicon Thin-Film Solar Cells. , 2016, , .		0
312	Scale Up Designs for Hand-Held Light-Weight TPV DC Power Supply. , 2017, , .		0
313	Multi-Objective Optimization for Color-Tunability and Transparency in Colloidal Quantum Dot Solar Cells., 2017,,.		0
314	Numerical Optical Optimization of Planar Monolithic Perovskite-Silicon Tandem Solar Cells., 2016,,.		0