List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7046023/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Learning Based Framework for Disease Prediction from Images of Human-Derived Pluripotent Stem<br>Cells of Schizophrenia Patients. Neuroinformatics, 2022, 20, 513-523.  | 1.5 | 1         |
| 2  | A Multiscale Deep Learning Approach for High-Resolution Hyperspectral Image Classification. IEEE<br>Geoscience and Remote Sensing Letters, 2021, 18, 167-171.             | 1.4 | 31        |
| 3  | Optimally Sparse Representations of Cartoon-Like Cylindrical Data. Journal of Geometric Analysis, 2021, 31, 8926-8946.                                                    | 0.5 | 0         |
| 4  | Stable recovery of planar regions with algebraic boundaries in Bernstein form. Advances in Computational Mathematics, 2021, 47, 1.                                        | 0.8 | 0         |
| 5  | Inhibition of AKT Signaling Alters βIV Spectrin Distribution at the AIS and Increases Neuronal Excitability. Frontiers in Molecular Neuroscience, 2021, 14, 643860.       | 1.4 | 3         |
| 6  | lmage inpainting using sparse multiscale representations: Image recovery performance guarantees.<br>Applied and Computational Harmonic Analysis, 2020, 49, 343-380.       | 1.1 | 5         |
| 7  | A multistep deep learning framework for the automated detection and segmentation of astrocytes in fluorescent images of brain tissue. Scientific Reports, 2020, 10, 5137. | 1.6 | 21        |
| 8  | Robust and stable region-of-interest tomographic reconstruction using a robust width prior. Inverse<br>Problems and Imaging, 2020, 14, 291-316.                           | 0.6 | 1         |
| 9  | Quantitative Methods in Ocular Fundus Imaging: Analysis of Retinal Microvasculature. Applied and<br>Numerical Harmonic Analysis, 2020, , 157-174.                         | 0.1 | 0         |
| 10 | Imaging of the Axon Initial Segment. Current Protocols in Neuroscience, 2019, 89, e78.                                                                                    | 2.6 | 3         |
| 11 | Directional multiscale representations and applications in digital neuron reconstruction. Journal of Computational and Applied Mathematics, 2019, 349, 482-493.           | 1.1 | 4         |
| 12 | Smooth projections and the construction of smooth Parseval frames of shearlets. Advances in<br>Computational Mathematics, 2019, 45, 3241-3264.                            | 0.8 | 4         |
| 13 | Geometric Separation in \$\$mathbb {R}^3\$\$ R 3. Journal of Fourier Analysis and Applications, 2019, 25, 108-130.                                                        | 0.5 | 1         |
| 14 | Optical compressive sensing technologies for space applications: instrumental concepts and performance analysis. , 2019, , .                                              |     | 1         |
| 15 | Structured receptive field networks and applications to hyperspectral image classification. , 2019, , .                                                                   |     | 5         |
| 16 | Automated sorting of neuronal trees in fluorescent images of neuronal networks using<br>NeuroTreeTracer. Scientific Reports, 2018, 8, 6450.                               | 1.6 | 12        |
| 17 | Statistical binary patterns and post-competitive representation for pattern recognition. International Journal of Machine Learning and Cybernetics, 2018, 9, 1023-1038.   | 2.3 | 4         |
| 18 | Detection of Singularities by Discrete Multiscale Directional Representations. Journal of Geometric Analysis, 2018, 28, 2102-2128.                                        | 0.5 | 10        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Shearlet-based regularized reconstruction in region-of-interest computed tomography. Mathematical<br>Modelling of Natural Phenomena, 2018, 13, 34.                                                | 0.9 | 2         |
| 20 | ROI reconstruction from truncated cone-beam projections. Inverse Problems and Imaging, 2018, 12, 29-57.                                                                                           | 0.6 | 2         |
| 21 | Coorbit Spaces with Voice in a Fréchet Space. Journal of Fourier Analysis and Applications, 2017, 23, 141-206.                                                                                    | 0.5 | 14        |
| 22 | Morphologically Decoupled Structured Sparsity for Rotation-Invariant Hyperspectral Image Analysis.<br>IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 4355-4366.                    | 2.7 | 20        |
| 23 | Rotation invariance through structured sparsity for robust hyperspectral image classification. , 2017, , .                                                                                        |     | 3         |
| 24 | Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks.<br>Neuroinformatics, 2017, 15, 303-319.                                                                         | 1.5 | 9         |
| 25 | Microlocal analysis of edge flatness through directional multiscale representations. Advances in Computational Mathematics, 2017, 43, 295-318.                                                    | 0.8 | 3         |
| 26 | Multiscale Analysis of Neurite Orientation and Spatial Organization in Neuronal Images.<br>Neuroinformatics, 2016, 14, 465-477.                                                                   | 1.5 | 4         |
| 27 | Genetic deletion of fibroblast growth factor 14 recapitulates phenotypic alterations underlying cognitive impairment associated with schizophrenia. Translational Psychiatry, 2016, 6, e806-e806. | 2.4 | 21        |
| 28 | Characterization and analysis of edges in piecewise smooth functions. Applied and Computational Harmonic Analysis, 2016, 41, 139-163.                                                             | 1.1 | 9         |
| 29 | Directional analysis of 3D tubular structures via isotropic well-localized atoms. Applied and Computational Harmonic Analysis, 2016, 40, 588-599.                                                 | 1.1 | 3         |
| 30 | Improved detection of soma location and morphology in fluorescence microscopy images of neurons.<br>Journal of Neuroscience Methods, 2016, 274, 61-70.                                            | 1.3 | 28        |
| 31 | Detection of boundary curves on the piecewise smooth boundary surface of three dimensional solids.<br>Applied and Computational Harmonic Analysis, 2016, 40, 137-171.                             | 1.1 | 5         |
| 32 | Automated Detection of Soma Location and Morphology in Neuronal Network Cultures. PLoS ONE, 2015, 10, e0121886.                                                                                   | 1.1 | 27        |
| 33 | Directional ratio based on parabolic molecules and its application to the analysis of tubular structures. , 2015, , .                                                                             |     | Ο         |
| 34 | The Nav1.2 channel is regulated by GSK3. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850,<br>832-844.                                                                                | 1.1 | 33        |
| 35 | Regularized directional feature learning for face recognition. Multimedia Tools and Applications, 2015, 74, 11281-11295.                                                                          | 2.6 | 4         |
| 36 | Improved Automatic Centerline Tracing for Dendritic and Axonal Structures. Neuroinformatics, 2015, 13, 227-244.                                                                                   | 1.5 | 15        |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A two-stage shearlet-based approach for the removal of random-valued impulse noise in images.<br>Journal of Visual Communication and Image Representation, 2015, 32, 83-94. | 1.7 | 13        |
| 38 | Geometric Separation of Singularities Using Combined Multiscale Dictionaries. Journal of Fourier Analysis and Applications, 2015, 21, 667-693.                              | 0.5 | 7         |
| 39 | Image registration using the shearlet transform. , 2015, , .                                                                                                                |     | 1         |
| 40 | Sparse multi-stage regularized feature learning for robust face recognition. Expert Systems With Applications, 2015, 42, 269-279.                                           | 4.4 | 11        |
| 41 | From Group Representations to Signal Analysis. Applied and Numerical Harmonic Analysis, 2015, , 1-5.                                                                        | 0.1 | 1         |
| 42 | Efficient Analysis and Detection of Edges Through Directional Multiscale Representations. Applied and Numerical Harmonic Analysis, 2015, , 149-197.                         | 0.1 | 0         |
| 43 | Face, gender and race classification using multi-regularized features learning. , 2014, , .                                                                                 |     | 3         |
| 44 | Regularized Shearlet Network for face recognition using single sample per person. , 2014, , .                                                                               |     | 13        |
| 45 | ShearFace: Efficient Extraction of Anisotropic Features for Face Recognition. , 2014, , .                                                                                   |     | 5         |
| 46 | Sparse Multi-regularized Shearlet-Network Using Convex Relaxation for Face Recognition. , 2014, , .                                                                         |     | 3         |
| 47 | Efficient Processing of Fluorescence Images Using Directional Multiscale Representations.<br>Mathematical Modelling of Natural Phenomena, 2014, 9, 177-193.                 | 0.9 | 16        |
| 48 | Directional Multiscale Processing of Images Using Wavelets with Composite Dilations. Journal of<br>Mathematical Imaging and Vision, 2014, 48, 13-34.                        | 0.8 | 14        |
| 49 | Discrete shearlet transform on GPU with applications in anomaly detection and denoising. Eurasip<br>Journal on Advances in Signal Processing, 2014, 2014, .                 | 1.0 | 25        |
| 50 | Microlocal Analysis of Singularities from Directional Multiscale Representations. Springer<br>Proceedings in Mathematics and Statistics, 2014, , 173-196.                   | 0.1 | 3         |
| 51 | Shearlet Smoothness Spaces. Journal of Fourier Analysis and Applications, 2013, 19, 577-611.                                                                                | 0.5 | 33        |
| 52 | Optimal recovery of 3D X-ray tomographic data via shearlet decomposition. Advances in Computational Mathematics, 2013, 39, 227-255.                                         | 0.8 | 8         |
| 53 | Optimal restoration of noisy 3D x-ray data via shearlet decompositions. , 2013, , .                                                                                         |     | 0         |
| 54 | Directional and non-directional representations for the characterization of neuronal morphology. , 2013, , .                                                                |     | 4         |

4

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Construction of Smooth Parseval Frames of Shearlets. Mathematical Modelling of Natural Phenomena, 2013, 8, 82-105.                                                       | 0.9 | 62        |
| 56 | Improved automatic centerline tracing for dendritic structures. , 2013, , .                                                                                                  |     | 6         |
| 57 | Shearlet Network-based Sparse Coding Augmented by Facial Texture Features for Face Recognition.<br>Lecture Notes in Computer Science, 2013, , 611-620.                       | 1.0 | 14        |
| 58 | Wavelets. Notices of the American Mathematical Society, 2013, 60, 66.                                                                                                        | 0.1 | 17        |
| 59 | A Harmonic Analysis View on Neuroscience Imaging. , 2013, , 423-450.                                                                                                         |     | 0         |
| 60 | Hyperbolic shearlets. , 2012, , .                                                                                                                                            |     | 1         |
| 61 | Optimally Sparse Representations of 3D Data with \$C^2\$ Surface Singularities Using Parseval Frames of Shearlets. SIAM Journal on Mathematical Analysis, 2012, 44, 851-886. | 0.9 | 36        |
| 62 | Image Processing Using Shearlets. , 2012, , 283-325.                                                                                                                         |     | 20        |
| 63 | 3-D Discrete Shearlet Transform and Video Processing. IEEE Transactions on Image Processing, 2012, 21, 2944-2954.                                                            | 6.0 | 69        |
| 64 | Characterization of Piecewise-Smooth Surfaces Using the 3D Continuous Shearlet Transform. Journal of Fourier Analysis and Applications, 2012, 18, 488-516.                   | 0.5 | 30        |
| 65 | Critically Sampled Wavelets With Composite Dilations. IEEE Transactions on Image Processing, 2012, 21, 550-561.                                                              | 6.0 | 11        |
| 66 | Introduction to Shearlets. Applied and Numerical Harmonic Analysis, 2012, , 1-38.                                                                                            | 0.1 | 56        |
| 67 | Analysis and Identification of Multidimensional Singularities Using the Continuous Shearlet<br>Transform. Applied and Numerical Harmonic Analysis, 2012, , 69-103.           | 0.1 | 7         |
| 68 | Searchlight CT: A new reconstruction method for collimated X-ray tomography. , 2012, , .                                                                                     |     | 0         |
| 69 | Optimally sparse shearlet approximations of 3D data. Proceedings of SPIE, 2011, , .                                                                                          | 0.8 | 2         |
| 70 | 3D discrete shearlet transform and video denoising. , 2011, , .                                                                                                              |     | 4         |
| 71 | Multicomposite wavelet estimation. , 2011, , .                                                                                                                               |     | 0         |
| 72 | Analysis and detection of surface discontinuities using the 3D continuous shearlet transform.<br>Applied and Computational Harmonic Analysis, 2011, 30, 231-242.             | 1.1 | 43        |

DEMETRIO LABATE

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mini-Workshop: Shearlets. Oberwolfach Reports, 2011, 7, 2573-2611.                                                                                                                | 0.0 | 1         |
| 74 | Radon transform inversion using the shearlet representation. Applied and Computational Harmonic Analysis, 2010, 29, 232-250.                                                      | 1.1 | 65        |
| 75 | Continuous and Discrete Reproducing Systems That Arise from Translations. Theory and Applications of Composite Wavelets. Applied and Numerical Harmonic Analysis, 2010, , 87-130. | 0.1 | 3         |
| 76 | Optimally sparse 3D approximations using shearlet representations. Electronic Research Announcements in Mathematical Sciences, 2010, 17, 125-137.                                 | 0.6 | 5         |
| 77 | Resolution of the wavefront set using continuous shearlets. Transactions of the American<br>Mathematical Society, 2009, 361, 2719-2754.                                           | 0.5 | 212       |
| 78 | Improved radon based imaging using the shearlet transform. Proceedings of SPIE, 2009, , .                                                                                         | 0.8 | 5         |
| 79 | Edge analysis and identification using the continuous shearlet transform. Applied and Computational<br>Harmonic Analysis, 2009, 27, 24-46.                                        | 1.1 | 123       |
| 80 | Shearlet-Based Total Variation Diffusion for Denoising. IEEE Transactions on Image Processing, 2009, 18, 260-268.                                                                 | 6.0 | 188       |
| 81 | Critically sampled composite wavelets. , 2009, , .                                                                                                                                |     | 2         |
| 82 | Characterization and Analysis of Edges Using the Continuous Shearlet Transform. SIAM Journal on<br>Imaging Sciences, 2009, 2, 959-986.                                            | 1.3 | 86        |
| 83 | A Shearlet Approach to Edge Analysis and Detection. IEEE Transactions on Image Processing, 2009, 18, 929-941.                                                                     | 6.0 | 279       |
| 84 | Representation of Fourier Integral Operators Using Shearlets. Journal of Fourier Analysis and Applications, 2008, 14, 327-371.                                                    | 0.5 | 41        |
| 85 | Sparse directional image representations using the discrete shearlet transform. Applied and Computational Harmonic Analysis, 2008, 25, 25-46.                                     | 1.1 | 924       |
| 86 | Edge detection and processing using shearlets. , 2008, , .                                                                                                                        |     | 10        |
| 87 | Optimally Sparse Multidimensional Representation Using Shearlets. SIAM Journal on Mathematical Analysis, 2007, 39, 298-318.                                                       | 0.9 | 619       |
| 88 | Optimally Sparse Image Representations using Shearlets. , 2006, , .                                                                                                               |     | 35        |
| 89 | Wavelets with composite dilations and their MRA properties. Applied and Computational Harmonic Analysis, 2006, 20, 202-236.                                                       | 1.1 | 172       |
|    |                                                                                                                                                                                   |     |           |

90 The Theory of Wavelets with Composite Dilations. , 2006, , 231-250.

59

| #   | Article                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The theory of reproducing systems on locally compact abelian groups. Colloquium Mathematicum, 2006, 106, 197-220.                        | 0.2 | 22        |
| 92  | Connectivity in the set of Gabor frames. Applied and Computational Harmonic Analysis, 2005, 18, 123-136.                                 | 1.1 | 1         |
| 93  | Sparse multidimensional representation using shearlets. , 2005, , .                                                                      |     | 233       |
| 94  | Oversampling, quasi-affine frames, and wave packets. Applied and Computational Harmonic Analysis, 2004, 16, 111-147.                     | 1.1 | 48        |
| 95  | Wavelets with composite dilations. Electronic Research Announcements in Mathematical Sciences, 2004, 10, 78-87.                          | 0.7 | 92        |
| 96  | Affine, Quasi-Affine and Co-Affine Wavelets. Studies in Computational Mathematics, 2003, 10, 215-223.                                    | 0.2 | 9         |
| 97  | A unified characterization of reproducing systems generated by a finite family. Journal of Geometric<br>Analysis, 2002, 12, 469-491.     | 0.5 | 33        |
| 98  | A unified characterization of reproducing systems generated by a finite family, II. Journal of Geometric<br>Analysis, 2002, 12, 615-662. | 0.5 | 110       |
| 99  | Time-Frequency Analysis of Pseudodifferential Operators. Monatshefte Fur Mathematik, 2001, 133, 143-156.                                 | 0.5 | 23        |
| 100 | Pseudodifferential Operators on Modulation Spaces. Journal of Mathematical Analysis and Applications, 2001, 262, 242-255.                | 0.5 | 47        |