Mohammad Maslehuddin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7045975/publications.pdf

Version: 2024-02-01

181 papers 5,873 citations

70961 41 h-index 102304 66 g-index

181 all docs

181 docs citations

times ranked

181

3589 citing authors

#	Article	IF	CITATIONS
1	Properties of natural pozzolan-based geopolymer concrete: effects of natural pozzolan content, type of alkaline activator, and silicate/alkali ratio. European Journal of Environmental and Civil Engineering, 2023, 27, 356-373.	1.0	8
2	Influence of accelerated carbonation curing on the properties of self-compacting concrete mixtures containing different mineral fillers. European Journal of Environmental and Civil Engineering, 2022, 26, 76-93.	1.0	5
3	Effect of abrasion and chemical treatment of recycled aggregate on the workability, strength, and durability properties of concrete. European Journal of Environmental and Civil Engineering, 2022, 26, 3276-3291.	1.0	10
4	Molecular Simulation of Cement-Based Materials and Their Properties. Engineering, 2022, 15, 165-178.	3.2	21
5	Lime-activation of natural pozzolan for use as supplementary cementitious material in concrete. Ain Shams Engineering Journal, 2022, 13, 101602.	3 . 5	11
6	Cost-effective treatment of crumb rubber to improve the properties of crumb-rubber concrete. Case Studies in Construction Materials, 2022, 16, e00881.	0.8	5
7	Effect of different treatments of crumb rubber on the durability characteristics of rubberized concrete. Construction and Building Materials, 2022, 318, 126030.	3.2	28
8	Chloride diffusion models for plain and blended cement concretes exposed to laboratory and atmospheric marine conditions. Journal of Materials Research and Technology, 2022, 17, 125-138.	2.6	9
9	Effects of key factors on the compressive strength of metakaolin and limestone powder-based alkali-activated concrete mixtures: An experimental and statistical study. Case Studies in Construction Materials, 2022, 16, e00915.	0.8	12
10	Prediction of Strength of Plain and Blended Cement Concretes Cured Under Hot Weather Using Quadratic Regression and ANN Tools. Arabian Journal for Science and Engineering, 2022, 47, 12697-12709.	1.7	3
11	Improvement of concrete durability using nanocomposite coating prepared by mixing epoxy coating with Submicron/Nano-carbon obtained from heavy fuel oil ash. Construction and Building Materials, 2022, 325, 126812.	3.2	15
12	Role of casting and curing conditions on the strength and drying shrinkage of greener concrete. Environmental Science and Pollution Research, 2022, 29, 72598-72610.	2.7	5
13	A review on treatment techniques to improve the durability of recycled aggregate concrete: Enhancement mechanisms, performance and cost analysis. Journal of Building Engineering, 2022, 55, 104713.	1.6	23
14	Effect of silica fume inclusion on the strength, shrinkage and durability characteristics of natural pozzolan-based cement concrete. Case Studies in Construction Materials, 2022, 17, e01255.	0.8	10
15	Sulfuric acid resistance of alkali/slag activated silicoâ€manganese fumeâ€based mortars. Structural Concrete, 2021, 22, E400.	1.5	3
16	Sodium sulfate resistance of alkali/slag activated silico–manganese fumeâ€based composites. Structural Concrete, 2021, 22, E415.	1.5	2
17	Corrosion behaviour of carbon steel and corrosion resistant steel under elevated temperature and chloride concentration in simulated concrete pore solution. European Journal of Environmental and Civil Engineering, 2021, 25, 452-467.	1.0	7
18	Performance evaluation of heavy oil fly ash as a retarder of Portland cement hydration. Journal of Building Engineering, 2021, 34, 101881.	1.6	1

#	Article	IF	Citations
19	Chloride diffusion models for Type I and fly ash cement concrete exposed to field and laboratory conditions. Marine Structures, 2021, 76, 102900.	1.6	21
20	An overview of factors influencing the properties of alkali-activated binders. Journal of Cleaner Production, 2021, 286, 124972.	4.6	33
21	Effect of sodium hydroxide concentration on strength and microstructure of alkali-activated natural pozzolan and limestone powder mortar. Construction and Building Materials, 2021, 271, 121530.	3.2	28
22	Influence of in-situ casting temperature and curing regime on the properties of blended cement concretes under hot climatic conditions. Construction and Building Materials, 2021, 272, 121865.	3.2	13
23	Utilization of Portland cement with limestone powder and cement kiln dust for stabilization/solidification of oil-contaminated marl soil. Environmental Science and Pollution Research, 2021, 28, 3196-3216.	2.7	21
24	Influence of mix composition on the properties of recycled aggregate concrete. Structural Concrete, 2021, 22, 2939-2951.	1.5	9
25	Properties of concrete with untreated and treated crumb rubber – A review. Journal of Materials Research and Technology, 2021, 11, 1753-1798.	2.6	77
26	Effect of alkaline activator ratio on the compressive strength response of POFA-EACC mortar subjected to elevated temperature. Materials at High Temperatures, 2021, 38, 166-176.	0.5	4
27	Experimental and Modelling of Alkali-Activated Mortar Compressive Strength Using Hybrid Support Vector Regression and Genetic Algorithm. Materials, 2021, 14, 3049.	1.3	7
28	Preparation, Characterization, and Evaluation of the Anticorrosion Performance of Submicron/Nanocarbon from Jute Sticks. Chemistry - an Asian Journal, 2021, 16, 3914-3930.	1.7	7
29	Influence of Silica Modulus and Curing Temperature on the Strength of Alkali-Activated Volcanic Ash and Limestone Powder Mortar. Materials, 2021, 14, 5204.	1.3	5
30	Preparation of submicron-/nano-carbon from heavy fuel oil ash and its corrosion resistance performance as composite epoxy coating. Journal of Cleaner Production, 2021, 319, 128735.	4.6	14
31	Evolution of room-cured alkali-activated silicomanganese fume-based green mortar designed using Taguchi method. Construction and Building Materials, 2021, 307, 124970.	3.2	15
32	Performance of corrosion inhibitors in cracked and uncracked silica fume cement concrete beams. European Journal of Environmental and Civil Engineering, 2020, 24, 1573-1588.	1.0	28
33	Characterization, Processing, and Application of Heavy Fuel Oil Ash, an Industrial Waste Material – A Review. Chemical Record, 2020, 20, 1568-1595.	2.9	16
34	Mechanical and thermal properties of lightweight recycled plastic aggregate concrete. Journal of Building Engineering, 2020, 32, 101710.	1.6	57
35	Development of high performance concrete using industrial waste materials and nano-silica. Journal of Materials Research and Technology, 2020, 9, 6696-6711.	2.6	30
36	Effect of mineral additives and two-stage mixing on the performance of recycled aggregate concrete. Journal of Material Cycles and Waste Management, 2020, 22, 1587-1601.	1.6	24

#	Article	lF	CITATIONS
37	Stabilization and Solidification of Oil-Contaminated Sandy Soil Using Portland Cement and Supplementary Cementitious Materials. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	15
38	Ensemble machine learning model for corrosion initiation time estimation of embedded steel reinforced self-compacting concrete. Measurement: Journal of the International Measurement Confederation, 2020, 165, 108141.	2.5	51
39	Macro- and Micro-Properties of Engineered Cementitious Composites (ECCs) Incorporating Industrial Waste Materials: A Review. Arabian Journal for Science and Engineering, 2020, 45, 7869-7895.	1.7	14
40	Influence of pore structure on the properties of green concrete derived from natural pozzolan and nanosilica. Journal of Sustainable Cement-Based Materials, 2020, 9, 233-257.	1.7	14
41	Influence of heat curing period and temperature on the strength of silico-manganese fume-blast furnace slag-based alkali-activated mortar. Construction and Building Materials, 2020, 251, 118961.	3.2	39
42	Prediction of Properties of Concrete Cured Under Hot Weather Using Multivariate Regression and ANN Models. Arabian Journal for Science and Engineering, 2020, 45, 4111-4123.	1.7	19
43	Development of a concrete set retarder utilizing electric arc furnace dust. Construction and Building Materials, 2020, 255, 119378.	3.2	17
44	Magnesium sulfate resistance of alkali/slag activated silico-manganese fume-based composites. Construction and Building Materials, 2020, 265, 120851.	3.2	16
45	Evaluation of the Effect of Exposure Duration and Fiber Content on the Mechanical Properties of Polypropylene Fiber-Reinforced UHPC Exposed to Sustained Elevated Temperature. Journal of Testing and Evaluation, 2020, 48, 20180687.	0.4	7
46	Development of Sustainable Cementitious Binder Utilizing Silicomanganese Fumes. Smart Innovation, Systems and Technologies, 2020, , 299-308.	0.5	1
47	Impact of Slag Content and Curing Methods on the Strength of Alkaline-Activated Silico-Manganese Fume/Blast Furnace Slag Mortars. Arabian Journal for Science and Engineering, 2019, 44, 8325-8335.	1.7	20
48	Radiation shielding performance of heavy-weight concrete mixtures. Construction and Building Materials, 2019, 224, 284-291.	3.2	42
49	Synthesis of Alkali-Activated Binary Blended Silico-Manganese Fume and Ground Blast Furnace Slag Mortar. Journal of Advanced Concrete Technology, 2019, 17, 728-735.	0.8	15
50	Influence of admixing natural pozzolan as partial replacement of cement and microsilica in UHPC mixtures. Construction and Building Materials, 2019, 198, 437-444.	3.2	45
51	Synthesis of low temperature cured alkaline activated silicomanganese fume mortar. Construction and Building Materials, 2019, 200, 387-397.	3.2	21
52	Mechanical properties of steel fiber-reinforced UHPC mixtures exposed to elevated temperature: Effects of exposure duration and fiber content. Composites Part B: Engineering, 2019, 168, 291-301.	5.9	89
53	Influence of composition and concentration of alkaline activator on the properties of natural-pozzolan based green concrete. Construction and Building Materials, 2019, 201, 186-195.	3.2	40
54	Modelling the early strength of alkali-activated cement composites containing palm oil fuel ash. Proceedings of Institution of Civil Engineers: Construction Materials, 2019, 172, 133-143.	0.7	4

#	Article	IF	Citations
55	Mechanical properties, durability characteristics and shrinkage of plain cement and fly ash concretes subjected to accelerated carbonation curing. Journal of the South African Institution of Civil Engineering, 2019, 61, 73-81.	0.3	6
56	Geotechnical Properties of Plastic Marl Contaminated with Diesel. Arabian Journal for Science and Engineering, 2018, 43, 5573-5583.	1.7	7
57	Efficiency of corrosion inhibitors in mitigating corrosion of steel under elevated temperature and chloride concentration. Construction and Building Materials, 2018, 163, 97-112.	3.2	43
58	Thermal-resistant lightweight concrete with polyethylene beads as coarse aggregates. Construction and Building Materials, 2018, 164, 739-749.	3.2	37
59	Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete. Construction and Building Materials, 2018, 173, 573-585.	3.2	79
60	Impact of Al(OH)3 addition to POFA on the compressive strength of POFA alkali-activated mortar. Construction and Building Materials, 2018, 190, 65-82.	3.2	19
61	Enhancing the engineering properties and microstructure of room temperature cured alkali activated natural pozzolan based concrete utilizing nanosilica. Construction and Building Materials, 2018, 189, 352-365.	3.2	45
62	Effect of NaOH Molarity on the Strength and Microstructure of Natural Pozzolan-Based AAC. MATEC Web of Conferences, 2018, 203, 06017.	0.1	2
63	Efficiency of generic and proprietary inhibitors in mitigating Corrosion of Carbon Steel in Chloride-Sulfate Environments. Scientific Reports, 2018, 8, 11443.	1.6	37
64	Stabilisation of dune sand using electric arc furnace dust. International Journal of Pavement Engineering, 2017, 18, 513-520.	2.2	10
65	Effects of carbonation pressure and duration on strength evolution of concrete subjected to accelerated carbonation curing. Construction and Building Materials, 2017, 136, 565-573.	3.2	94
66	Effect of alkaline activators and binder content on the properties of natural pozzolan-based alkali activated concrete. Construction and Building Materials, 2017, 147, 648-660.	3.2	68
67	Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust. Scientific Reports, 2017, 7, 46676.	1.6	48
68	Effect of placement temperature and curing method on plastic shrinkage of plain and pozzolanic cement concretes under hot weather. Construction and Building Materials, 2017, 152, 943-953.	3.2	43
69	Durability performance of Palm Oil Fuel Ash-based Engineered Alkaline-activated Cementitious Composite (POFA-EACC) mortar in sulfate environment. Construction and Building Materials, 2017, 131, 229-244.	3.2	61
70	POFA-Engineered Alkali-activated Cementitious Composite Performance in Acid Environment. Journal of Advanced Concrete Technology, 2017, 15, 684-699.	0.8	13
71	Development of an optimum mixture of ultra-high performance concrete. European Journal of Environmental and Civil Engineering, 2016, 20, 1106-1126.	1.0	45
72	Impact of added water and superplasticizer on early compressive strength of selected mixtures of palm oil fuel ash-based engineered geopolymer composites. Construction and Building Materials, 2016, 109, 198-206.	3.2	48

#	Article	IF	Citations
73	Effect of casting temperature on strength and density of plain and blended cement concretes prepared and cured under hot weather conditions. Construction and Building Materials, 2016, 112, 529-537.	3.2	23
74	Chemical Resistance and Mechanical Properties of Glass Fiber–Reinforced Plastic Pipes for Oil, Gas, and Power-Plant Applications. Journal of Composites for Construction, 2016, 20, .	1.7	7
75	Mechanical properties and durability characteristics of SCC incorporating crushed limestone powder. Journal of Sustainable Cement-Based Materials, 2015, 4, 176-193.	1.7	5
76	Pulse height tests of a large diameter fast LaBr3:Ce scintillation detector. Applied Radiation and Isotopes, 2015, 104, 224-231.	0.7	7
77	Properties of SCC prepared using natural pozzolana and industrial wastes as mineral fillers. Cement and Concrete Composites, 2015, 62, 125-133.	4.6	42
78	Evaluation of Slag-Blended Alkaline-Activated Palm Oil Fuel Ash Mortar Exposed to the Sulfuric Acid Environment. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	11
79	Chlorine signal attenuation in concrete. Applied Radiation and Isotopes, 2015, 105, 6-10.	0.7	5
80	Effect of key mixture parameters on flow and mechanical properties of reactive powder concrete. Construction and Building Materials, 2015, 99, 73-81.	3.2	64
81	Impacts of silica modulus on the early strength of alkaline activated ground slag/ultrafine palm oil fuel ash based concrete. Materials and Structures/Materiaux Et Constructions, 2015, 48, 733-741.	1.3	32
82	Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	39
83	Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	8
84	A Simple and Reliable Setup for Monitoring Corrosion Rate of Steel Rebars in Concrete. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	5
85	Performance of Different Grades of Palm Oil Fuel Ash with Ground Slag as Base Materials in the Synthesis of Alkaline Activated Mortar. Journal of Advanced Concrete Technology, 2014, 12, 378-387.	0.8	17
86	Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag. Construction and Building Materials, 2014, 52, 504-510.	3.2	103
87	Effects of addition of Al(OH)3 on the strength of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash (AAGU) based binder. Construction and Building Materials, 2014, 50, 361-367.	3.2	32
88	Performance Evaluation of a Portable Neutron Generator for Prompt Gamma-Ray Applications. Arabian Journal for Science and Engineering, 2014, 39, 531-539.	1.1	2
89	Evolution of alkaline activated ground blast furnace slag–ultrafine palm oil fuel ash based concrete. Materials & Design, 2014, 55, 387-393.	5.1	115
90	Effects of H2O/Na2O molar ratio on the strength of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash based concrete. Materials & Design, 2014, 56, 158-164.	5.1	58

#	Article	IF	CITATIONS
91	Shrinkage and strength of alkaline activated ground steel slag/ultrafine palm oil fuel ash pastes and mortars. Materials & Design, 2014, 63, 710-718.	5.1	40
92	In situ measurement of thermal transmittance and thermal resistance of hollow reinforced precast concrete walls. Energy and Buildings, 2014, 84, 132-141.	3.1	87
93	Prompt gamma ray evaluation for chlorine analysis in blended cement concrete. Applied Radiation and Isotopes, 2014, 94, 8-13.	0.7	11
94	Properties of self-consolidating concrete made utilizing alternative mineral fillers. Construction and Building Materials, 2014, 68, 268-276.	3.2	33
95	Influence of curing methods and concentration of NaOH on strength of the synthesized alkaline activated ÂgroundÂslag-ultrafine palm oil fuel ash mortar/concrete. Construction and Building Materials, 2014, 66, 541-548.	3.2	50
96	Effect of curing methods on shrinkage and corrosion resistance of concrete. Construction and Building Materials, 2013, 41, 634-641.	3.2	39
97	Effect of curing methods on strength and durability of concrete under hot weather conditions. Cement and Concrete Composites, 2013, 41, 60-69.	4.6	48
98	Radiation shielding properties of concrete with electric arc furnace slag aggregates and steel shots. Annals of Nuclear Energy, 2013, 53, 192-196.	0.9	71
99	Chlorine detection in fly ash concrete using a portable neutron generator. Applied Radiation and Isotopes, 2012, 70, 1671-1674.	0.7	5
100	Prompt gamma-ray analysis of chlorine in superpozz cement concrete. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 693, 67-73.	0.7	14
101	Assessing concrete density using infrared thermographic (IRT) images. Infrared Physics and Technology, 2012, 55, 442-448.	1.3	6
102	Low energy prompt gamma-ray tests of a large volume BGO detector. Applied Radiation and Isotopes, 2012, 70, 222-226.	0.7	11
103	Response tests of a LaCl3:Ce scintillation detector with low energy prompt gamma rays from boron and cadmium. Applied Radiation and Isotopes, 2012, 70, 882-887.	0.7	16
104	Corrosion protection provided by chemical inhibitors to damaged FBEC bars. Construction and Building Materials, 2012, 29, 487-495.	3.2	4
105	Detection of sulfur in the reinforced concrete structures using a dual pulsed LIBS system. Optics and Laser Technology, 2012, 44, 566-571.	2.2	43
106	Detection of chloride in reinforced concrete using a dualpulsed laser-induced breakdown spectrometer system: comparative study of the atomic transition lines of Cl I at 59485 and 83759Ânm. Applied Optics, 2011, 50, 3488.	2.1	19
107	Detection efficiency of low levels of boron and cadmium with a LaBr3:Ce scintillation detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 665, 74-79.	0.7	16
108	Performance of blended cement concretes prepared with constant workability. Cement and Concrete Composites, 2011, 33, 90-102.	4.6	20

#	Article	IF	CITATIONS
109	Effect of electric arc furnace dust on the properties of OPC and blended cement concretes. Construction and Building Materials, 2011, 25, 308-312.	3.2	66
110	Estimation of minimum detectable concentration of chlorine in the blast furnace slag cement concrete. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1-6.	0.6	20
111	Sensitivity enhancement at 594.8 nm atomic transition of Cl I for chloride detection in the reinforced concrete using LIBS. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 198-203.	0.9	7
112	Non-destructive analysis of concrete for corrosion studies using nuclear technique. Atoms for Peace: an International Journal, 2010, 3, 65.	0.0	0
113	Use of cement kiln dust in blended cement concretes. Proceedings of Institution of Civil Engineers: Construction Materials, 2010, 163, 149-156.	0.7	3
114	Response of a PGNAA setup for pozzolan-based cement concrete specimens. Applied Radiation and Isotopes, 2010, 68, 635-638.	0.7	7
115	Effect of silica fume addition on the PGNAA measurement of chlorine in concrete. Applied Radiation and Isotopes, 2010, 68, 412-417.	0.7	9
116	Effect of dust in coarse aggregates on reinforcement corrosion in concrete. Construction and Building Materials, 2010, 24, 326-331.	3.2	4
117	Correlation between compressive strength and certain durability indices of plain and blended cement concretes. Cement and Concrete Composites, 2009, 31, 672-676.	4.6	74
118	Non-destructive analysis of chlorine in fly ash cement concrete. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 607, 446-450.	0.7	22
119	Performance of generic and proprietary corrosion inhibitors in chloride-contaminated silica fume cement concrete. Construction and Building Materials, 2009, 23, 1768-1774.	3.2	40
120	Properties of cement kiln dust concrete. Construction and Building Materials, 2009, 23, 2357-2361.	3.2	73
121	Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen. Applied Radiation and Isotopes, 2009, 67, 1707-1710.	0.7	9
122	Compliance criteria for quality concrete. Construction and Building Materials, 2008, 22, 1029-1036.	3.2	10
123	Usage of cement kiln dust in cement products – Research review and preliminary investigations. Construction and Building Materials, 2008, 22, 2369-2375.	3.2	86
124	Correlations Between Depth of Water Penetration, Chloride Permeability, and Coefficient of Chloride Diffusion in Plain, Silica Fume, and Fly Ash Cement Concretes. Journal of Testing and Evaluation, 2008, 36, 101074.	0.4	2
125	Performance of plain and blended cements exposed to high sulphate concentrations. Advances in Cement Research, 2007, 19, 167-175.	0.7	11
126	Effect of chloride concentration in soil on reinforcement corrosion. Construction and Building Materials, 2007, 21, 1825-1832.	3.2	41

#	Article	IF	CITATIONS
127	Shrinkage of plain and silica fume cement concrete under hot weather. Cement and Concrete Composites, 2007, 29, 690-699.	4.6	89
128	Effect of superplasticizer on plastic shrinkage of plain and silica fume cement concretes. Construction and Building Materials, 2006, 20, 642-647.	3.2	41
129	LONG-TERM MONITORING OF FBEC STEEL BARS CORROSION IN CHLORIDE-CONTAMINATED CONCRETE. , 2005, , 725-734.		O
130	Performance evaluation of repair systems under varying exposure conditions. Cement and Concrete Composites, 2005, 27, 885-897.	4.6	9
131	Verification of design calculations of a PGNAA setup using nuclear track detectors. Radiation Measurements, 2004, 38, 37-41.	0.7	4
132	Search of a prompt gamma ray for chlorine analysis in a Portland cement sample. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 533, 591-597.	0.7	8
133	Effect of silica fume on the mechanical properties of low quality coarse aggregate concrete. Cement and Concrete Composites, 2004, 26, 891-900.	4.6	80
134	Effect of type and dosage of silica fume on plastic shrinkage in concrete exposed to hot weather. Construction and Building Materials, 2004, 18, 737-743.	3.2	45
135	Monte Carlo simulations for design of the KFUPM PGNAA facility. Radiation Physics and Chemistry, 2003, 66, 89-98.	1.4	26
136	Special Issue on Concrete Durability. Cement and Concrete Composites, 2003, 25, 399.	4.6	0
137	Effectiveness of corrosion inhibitors in contaminated concrete. Cement and Concrete Composites, 2003, 25, 439-449.	4.6	91
138	Effect of sulfate ions and associated cation type on the pore solution chemistry in chloride-contaminated plain and blended cements. Cement and Concrete Composites, 2003, 25, 513-525.	4.6	26
139	Mechanical properties and durability characteristics of polymer- and cement-based repair materials. Cement and Concrete Composites, 2003, 25, 527-537.	4.6	109
140	Performance tests of external moderators of a PGNAA setup. Applied Radiation and Isotopes, 2003, 58, 27-38.	0.7	20
141	Comparison of properties of steel slag and crushed limestone aggregate concretes. Construction and Building Materials, 2003, 17, 105-112.	3.2	339
142	Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Construction and Building Materials, 2003, 17, 97-103.	3.2	228
143	Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate. Cement and Concrete Composites, 2003, 25, 429-437.	4.6	163
144	Chloride-induced reinforcement corrosion in blended cement concretes exposed to chloride-sulphate environments. Magazine of Concrete Research, 2002, 54, 355-364.	0.9	15

#	Article	IF	Citations
145	Performance of concrete coating under varying exposure conditions. Materials and Structures/Materiaux Et Constructions, 2002, 35, 487-494.	1.3	28
146	Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes. Cement and Concrete Composites, 2002, 24, 17-25.	4.6	124
147	350keV accelerator-based neutron transmission setup at KFUPM for hydrogen detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 487, 667-675.	0.7	3
148	Effect of rebar cleanliness and repair materials on reinforcement corrosion and flexural strength of repaired concrete beams. Cement and Concrete Composites, 2002, 24, 139-149.	4.6	6
149	Effect of steel manufacturing process and atmospheric corrosion on the corrosion-resistance of steel bars in concrete. Cement and Concrete Composites, 2002, 24, 151-158.	4.6	23
150	Use of Surface Treatment Materials to Improve Concrete Durability. Journal of Materials in Civil Engineering, 1999, 11, 36-40.	1.3	83
151	Plastic shrinkage cracking of blended cement concretes in hot environments. Magazine of Concrete Research, 1999, 51, 241-246.	0.9	14
152	Effect of holidays and surface damage to FBEC on reinforcement corrosion. Construction and Building Materials, 1998, 12, 185-193.	3.2	8
153	Effect of mix proportions on plastic shrinkage cracking of concrete in hot environments. Construction and Building Materials, 1998, 12, 353-358.	3.2	43
154	Effect of Thermal Variations on Bond Strength of Fusion-Bonded Epoxy-Coated Bars. Cement, Concrete and Aggregates, 1998, 20, 163-168.	0.1	9
155	EVALUATION OF REPAIR MATERIALS FOR FUNCTIONAL IMPROVEMENT OF SLABS AND BEAMS WITH CORRODED REINFORCEMENT Proceedings of the Institution of Civil Engineers: Structures and Buildings, 1997, 122, 27-34.	0.4	15
156	Temperature effect on the pore solution chemistry in contaminated cements. Magazine of Concrete Research, 1997, 49, 5-14.	0.9	14
157	Effectiveness of concrete surface treatmentmaterials in reducing chloride-induced reinforcement corrosion. Construction and Building Materials, 1997, 11, 443-451.	3.2	21
158	Effectiveness of concrete surface treatment materials in reducing chloride-induced reinforcement corrosion. Construction and Building Materials, 1997, 11, 443-451.	3.2	51
159	Effect of Temperature and Salt Contamination on Carbonation of Cements. Journal of Materials in Civil Engineering, 1996, 8, 63-69.	1.3	32
160	Corrosion of Reinforcing Steel in Sabkha Environment. Journal of King Saud University, Engineering Sciences, 1996, 8, 37-49.	1.2	0
161	Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete. Construction and Building Materials, 1996, 10, 209-214.	3.2	132
162	Evaluation of a surface coating in retarding reinforcement corrosion. Construction and Building Materials, 1996, 10, 507-513.	3.2	8

#	Article	IF	Citations
163	Changes in the phase composition in OPC and blended cement mortars due to carbonation. Advances in Cement Research, 1996, 8, 167-173.	0.7	7
164	Performance and Correlation of the Properties of Fly Ash Cement Concrete. Cement, Concrete and Aggregates, 1996, 18, 71-77.	0.1	25
165	Role of chloride ions on expansion and strength reduction in plain and blended cements in sulfate environments. Construction and Building Materials, 1995, 9, 25-33.	3.2	107
166	Electrochemical behaviour of steel in plain and blended cement concretes in sulphate and/or chloride environments. Construction and Building Materials, 1995, 9, 97-103.	3.2	49
167	Magnesiumâ€6odium Sulfate Attack in Plain and Blended Cements. Journal of Materials in Civil Engineering, 1994, 6, 201-222.	1.3	134
168	Influence of chloride ions on sulphate deterioration in plain and blended cements. Magazine of Concrete Research, 1994, 46, 113-123.	0.9	58
169	Influence of atmospheric corrosion on the mechanical properties of reinforcing steel. Construction and Building Materials, 1994, 8, 35-41.	3.2	38
170	Influence of Sulfate Ions on Chloride-Induced Reinforcement Corrosion in Portland and Blended Cement Concretes. Cement, Concrete and Aggregates, 1994, 16, 3-11.	0.1	38
171	The effect of chloride and sulfate ions on reinforcement corrosion. Cement and Concrete Research, 1993, 23, 139-146.	4.6	76
172	Strength and Corrosion Resistance of Superplasticized Concretes. Journal of Materials in Civil Engineering, 1992, 4, 108-113.	1.3	2
173	Effect of field and laboratory curing on the durability characteristics of plain and pozzolan concretes. Cement and Concrete Composites, 1992, 14, 169-177.	4.6	11
174	Carbonation and corrosion of rebars in salt contaminated OPC/PFA concretes. Cement and Concrete Research, 1991, 21, 38-50.	4.6	22
175	A reply to a discussion by M.N. Haque and O.A. Kayyali of the paper "carbonation and corrosion of rebars in salt contaminated OPC/PFA concrete― Cement and Concrete Research, 1991, 21, 956-957.	4.6	1
176	A reply to a discussion by H.G. Sreenath and N.P. Rajamane of the paper "carbonation and corrosion of rebars in salt contaminated OPC/PRA concretes― Cement and Concrete Research, 1991, 21, 1183-1184.	4.6	0
177	Performance of austenitic stainless steels in MSF desalination plant flash chambers in the arabian gulf. Desalination, 1990, 78, 327-341.	4.0	5
178	Corrosion of Reinforcing Steel in Concrete Containing Slag or Pozzolans. Cement, Concrete and Aggregates, 1990, 12, 24-31.	0.1	27
179	Effect of Cement Replacement, Content, and Type on the Durability Performance of Fly Ash Concrete in the Middle East. Cement, Concrete and Aggregates, 1986, 8, 86-96.	0.1	5
180	Strength and Microstructural Performance of Nano-SiO ₂ Gel (NSG) Infused Alkaline Activated Ground Blast Furnace Slag-Ultrafine Palm Oil Fuel Ash (AAGU) Based Mortar. Advanced Materials Research, 0, 856, 280-284.	0.3	7

#	Article	IF	CITATIONS
181	Durability of recycled waste plastic aggregate concrete. European Journal of Environmental and Civil Engineering, 0, , 1-22.	1.0	1