
## Halina Offner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/704549/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature, 1989, 341, 541-544.                                                                          | 27.8 | 615       |
| 2  | Experimental Stroke Induces Massive, Rapid Activation of the Peripheral Immune System. Journal of<br>Cerebral Blood Flow and Metabolism, 2006, 26, 654-665.                                                                     | 4.3  | 483       |
| 3  | Cutting Edge: Estrogen Drives Expansion of the CD4+CD25+ Regulatory T Cell Compartment. Journal of Immunology, 2004, 173, 2227-2230.                                                                                            | 0.8  | 454       |
| 4  | Splenic Atrophy in Experimental Stroke Is Accompanied by Increased Regulatory T Cells and Circulating Macrophages. Journal of Immunology, 2006, 176, 6523-6531.                                                                 | 0.8  | 367       |
| 5  | T- and B-Cell-Deficient Mice with Experimental Stroke have Reduced Lesion Size and Inflammation.<br>Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1798-1805.                                                         | 4.3  | 341       |
| 6  | Decreased FOXP3 levels in multiple sclerosis patients. Journal of Neuroscience Research, 2005, 81, 45-52.                                                                                                                       | 2.9  | 323       |
| 7  | Low-Dose Estrogen Therapy Ameliorates Experimental Autoimmune Encephalomyelitis in Two Different<br>Inbred Mouse Strains. Journal of Immunology, 2001, 166, 2080-2089.                                                          | 0.8  | 311       |
| 8  | Regulatory B Cells Limit CNS Inflammation and Neurologic Deficits in Murine Experimental Stroke.<br>Journal of Neuroscience, 2011, 31, 8556-8563.                                                                               | 3.6  | 249       |
| 9  | Estrogen Treatment Down-Regulates TNF-α Production and Reduces the Severity of Experimental<br>Autoimmune Encephalomyelitis in Cytokine Knockout Mice. Journal of Immunology, 2001, 167, 542-552.                               | 0.8  | 245       |
| 10 | Estrogen-mediated immunomodulation involves reduced activation of effector T cells, potentiation of treg cells, and enhanced expression of the PD-1 costimulatory pathway. Journal of Neuroscience Research, 2006, 84, 370-378. | 2.9  | 205       |
| 11 | Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1).<br>International Immunology, 2007, 19, 337-343.                                                                                  | 4.0  | 202       |
| 12 | Functional assay for human CD4 <sup>+</sup> CD25 <sup>+</sup> Treg cells reveals an ageâ€dependent<br>loss of suppressive activity. Journal of Neuroscience Research, 2003, 74, 296-308.                                        | 2.9  | 184       |
| 13 | GPR30 Contributes to Estrogen-Induced Thymic Atrophy. Molecular Endocrinology, 2008, 22, 636-648.                                                                                                                               | 3.7  | 180       |
| 14 | Treatment of multiple sclerosis with T–cell receptor peptides: Results of a double–blind pilot trial.<br>Nature Medicine, 1996, 2, 1109-1115.                                                                                   | 30.7 | 175       |
| 15 | Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. Journal of Neuroimmunology, 2005, 170, 85-92.                                                                                           | 2.3  | 173       |
| 16 | The Protective Effect of 17β-Estradiol on Experimental Autoimmune Encephalomyelitis Is Mediated<br>through Estrogen Receptor-α. American Journal of Pathology, 2003, 163, 1599-1605.                                            | 3.8  | 167       |
| 17 | Estrogen inhibition of EAE involves effects on dendritic cell function. Journal of Neuroscience<br>Research, 2002, 70, 238-248.                                                                                                 | 2.9  | 151       |
| 18 | Identification of <i>Bphs</i> , an Autoimmune Disease Locus, as Histamine Receptor H <sub>1</sub> .<br>Science, 2002, 297, 620-623.                                                                                             | 12.6 | 148       |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Functional Role of Regulatory Lymphocytes in Stroke. Stroke, 2015, 46, 1422-1430.                                                                                                                                                                                            | 2.0 | 136       |
| 20 | Membrane Estrogen Receptor Regulates Experimental Autoimmune Encephalomyelitis through<br>Up-regulation of Programmed Death 1. Journal of Immunology, 2009, 182, 3294-3303.                                                                                                  | 0.8 | 131       |
| 21 | IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metabolic<br>Brain Disease, 2013, 28, 375-386.                                                                                                                                     | 2.9 | 129       |
| 22 | 17?-estradiol inhibits cytokine, chemokine, and chemokine receptor mRNA expression in the central nervous system of female mice with experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2001, 65, 529-542.                                         | 2.9 | 125       |
| 23 | Estradiol and G1 Reduce Infarct Size and Improve Immunosuppression after Experimental Stroke.<br>Journal of Immunology, 2010, 184, 4087-4094.                                                                                                                                | 0.8 | 117       |
| 24 | Oestrogen modulates experimental autoimmune encephalomyelitis and interleukinâ€17 production via programmed death 1. Immunology, 2009, 126, 329-335.                                                                                                                         | 4.4 | 116       |
| 25 | Oral Feeding with Ethinyl Estradiol Suppresses and Treats Experimental Autoimmune<br>Encephalomyelitis in SJL Mice and Inhibits the Recruitment of Inflammatory Cells into the Central<br>Nervous System. Journal of Immunology, 2003, 170, 1548-1555.                       | 0.8 | 115       |
| 26 | CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metabolic Brain Disease, 2011, 26, 87-90.                                                                                                                                                                         | 2.9 | 106       |
| 27 | Estrogen potentiates treatment with T-cell receptor protein of female mice with experimental encephalomyelitis. Journal of Clinical Investigation, 2000, 105, 1465-1472.                                                                                                     | 8.2 | 102       |
| 28 | A Potential Role for Estrogen in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis.<br>Annals of the New York Academy of Sciences, 2006, 1089, 343-372.                                                                                                       | 3.8 | 90        |
| 29 | Recombinant TCR Ligand Induces Tolerance to Myelin Oligodendrocyte Glycoprotein 35-55 Peptide and<br>Reverses Clinical and Histological Signs of Chronic Experimental Autoimmune Encephalomyelitis in<br>HLA-DR2 Transgenic Mice. Journal of Immunology, 2003, 171, 127-133. | 0.8 | 83        |
| 30 | Estrogenâ€induced protection against experimental autoimmune encephalomyelitis is abrogated in the absence of B cells. European Journal of Immunology, 2011, 41, 1165-1175.                                                                                                  | 2.9 | 83        |
| 31 | Middle-Age Male Mice Have Increased Severity of Experimental Autoimmune Encephalomyelitis and Are<br>Unresponsive to Testosterone Therapy. Journal of Immunology, 2005, 174, 2387-2395.                                                                                      | 0.8 | 78        |
| 32 | Recombinant T Cell Receptor Ligand Treats Experimental Stroke. Stroke, 2009, 40, 2539-2545.                                                                                                                                                                                  | 2.0 | 78        |
| 33 | Neuroimmunoprotective effects of estrogen and derivatives in experimental autoimmune<br>encephalomyelitis: Therapeutic implications for multiple sclerosis. Journal of Neuroscience Research,<br>2004, 78, 603-624.                                                          | 2.9 | 76        |
| 34 | Downâ€modulation of programmed death 1 alters regulatory T cells and promotes experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2010, 88, 7-15.                                                                                                   | 2.9 | 73        |
| 35 | Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice. Metabolic Brain Disease, 2014, 29, 59-73.                                                                        | 2.9 | 73        |
| 36 | Splenectomy reduces infarct volume and neuroinflammation in male but not female mice in experimental stroke. Journal of Neuroimmunology, 2015, 278, 289-298.                                                                                                                 | 2.3 | 72        |

| #  | Article                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Programmed Death-1 Pathway Limits Central Nervous System Inflammation and Neurologic Deficits in<br>Murine Experimental Stroke. Stroke, 2011, 42, 2578-2583.                                                                                                                                                    | 2.0 | 69        |
| 38 | Gender differences in experimental autoimmune encephalomyelitis develop during the induction of the immune response to encephalitogenic peptides. Journal of Neuroscience Research, 1998, 52, 420-426.                                                                                                          | 2.9 | 68        |
| 39 | GPR30, but not estrogen receptor- $\hat{l}$ ±, is crucial in the treatment of experimental autoimmune encephalomyelitis by oral ethinyl estradiol. BMC Immunology, 2010, 11, 20.                                                                                                                                | 2.2 | 66        |
| 40 | Intrastriatal B-cell administration limits infarct size after stroke in B-cell deficient mice. Metabolic<br>Brain Disease, 2012, 27, 487-493.                                                                                                                                                                   | 2.9 | 65        |
| 41 | Myelin oligodendrocyte glycoprotein-35–55 peptide induces severe chronic experimental autoimmune<br>encephalomyelitis in HLA-DR2-transgenic mice. European Journal of Immunology, 2004, 34, 1251-1261.                                                                                                          | 2.9 | 61        |
| 42 | Phenotypic Changes in Immune Cell Subsets Reflect Increased Infarct Volume in Male vs. Female Mice.<br>Translational Stroke Research, 2013, 4, 554-563.                                                                                                                                                         | 4.2 | 61        |
| 43 | Evaluation of the Effects of 17β-Estradiol (17β-E2) on Gene Expression in Experimental Autoimmune<br>Encephalomyelitis Using DNA Microarray. Endocrinology, 2002, 143, 313-319.                                                                                                                                 | 2.8 | 59        |
| 44 | PD-1 Interaction with PD-L1 but not PD-L2 on B-cells Mediates Protective Effects of Estrogen against EAE. Journal of Clinical & Cellular Immunology, 2013, 04, 143.                                                                                                                                             | 1.5 | 58        |
| 45 | A Novel Hypothesis: Regulatory B Lymphocytes Shape Outcome from Experimental Stroke.<br>Translational Stroke Research, 2012, 3, 324-330.                                                                                                                                                                        | 4.2 | 57        |
| 46 | The splenic response to stroke: from rodents to stroke subjects. Journal of Neuroinflammation, 2018, 15, 195.                                                                                                                                                                                                   | 7.2 | 57        |
| 47 | T Lymphocytes Do Not Directly Mediate the Protective Effect of Estrogen on Experimental Autoimmune<br>Encephalomyelitis. American Journal of Pathology, 2004, 165, 2069-2077.                                                                                                                                   | 3.8 | 55        |
| 48 | Partial <scp>MHC</scp> class <scp>II</scp> constructs inhibit <scp>MIF</scp> / <scp>CD</scp> 74<br>binding and downstream effects. European Journal of Immunology, 2013, 43, 1309-1321.                                                                                                                         | 2.9 | 54        |
| 49 | Rudimentary TCR Signaling Triggers Default IL-10 Secretion by Human Th1 Cells. Journal of Immunology, 2001, 167, 4386-4395.                                                                                                                                                                                     | 0.8 | 53        |
| 50 | Sustained expression of circulating human alpha-1 antitrypsin reduces inflammation, increases<br>CD4+FoxP3+ Treg cell population and prevents signs of experimental autoimmune encephalomyelitis in<br>mice. Metabolic Brain Disease, 2011, 26, 107-113.                                                        | 2.9 | 53        |
| 51 | PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. Journal of Neuroinflammation, 2013, 10, 111.                                                                                                                                                    | 7.2 | 53        |
| 52 | Oestrogen treatment of experimental autoimmune encephalomyelitis requires<br>17βâ€oestradiolâ€receptorâ€positive <scp>B</scp> cells that upâ€regulate <scp>PD</scp> â€1 on<br><scp>CD</scp> 4 <sup>+</sup> Â <scp>F</scp> oxp3 <sup>+</sup> regulatory <scp>T</scp> cells.<br>Immunology, 2012, 137, 282-293.   | 4.4 | 52        |
| 53 | A Promising Therapeutic Approach for Multiple Sclerosis: Recombinant T-Cell Receptor Ligands<br>Modulate Experimental Autoimmune Encephalomyelitis by Reducing Interleukin-17 Production and<br>Inhibiting Migration of Encephalitogenic Cells into the CNS. Journal of Neuroscience, 2007, 27,<br>12531-12539. | 3.6 | 50        |
| 54 | Monomeric Recombinant TCR Ligand Reduces Relapse Rate and Severity of Experimental Autoimmune<br>Encephalomyelitis in SJL/J Mice through Cytokine Switch. Journal of Immunology, 2004, 172, 4556-4566.                                                                                                          | 0.8 | 49        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Estrogen induces multiple regulatory B cell subtypes and promotes M2 microglia and neuroprotection during experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2016, 293, 45-53.                                            | 2.3 | 49        |
| 56 | Antigen-Specific Therapy Promotes Repair of Myelin and Axonal Damage in Established EAE. Journal of<br>Neurochemistry, 2006, 98, 1817-1827.                                                                                                   | 3.9 | 48        |
| 57 | Oestrogen-mediated protection of experimental autoimmune encephalomyelitis in the absence of Foxp3+ regulatory T cells implicates compensatory pathways including regulatory B cells.<br>Immunology, 2011, 132, 340-347.                      | 4.4 | 48        |
| 58 | HLA-DRα1 Constructs Block CD74 Expression and MIF Effects in Experimental Autoimmune<br>Encephalomyelitis. Journal of Immunology, 2014, 192, 4164-4173.                                                                                       | 0.8 | 48        |
| 59 | IL-13-Mediated Gender Difference in Susceptibility to Autoimmune Encephalomyelitis. Journal of<br>Immunology, 2008, 180, 2679-2685.                                                                                                           | 0.8 | 47        |
| 60 | Myelin specific cells infiltrate MCAO lesions and exacerbate stroke severity. Metabolic Brain Disease, 2012, 27, 7-15.                                                                                                                        | 2.9 | 47        |
| 61 | Estrogen protection against EAE modulates the microbiota and mucosal-associated regulatory cells.<br>Journal of Neuroimmunology, 2017, 310, 51-59.                                                                                            | 2.3 | 47        |
| 62 | Recombinant TCR Ligand Induces Early TCR Signaling and a Unique Pattern of Downstream Activation.<br>Journal of Immunology, 2003, 171, 1934-1940.                                                                                             | 0.8 | 46        |
| 63 | Estrogen treatment induces a novel population of regulatory cells, which suppresses experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2004, 77, 119-126.                                                           | 2.9 | 46        |
| 64 | Role for microglia in sex differences after ischemic stroke: importance of M2. Metabolic Brain Disease, 2015, 30, 1515-1529.                                                                                                                  | 2.9 | 46        |
| 65 | Regulatory CD8+CD122+ T-cells predominate in CNS after treatment of experimental stroke in male mice with IL-10-secreting B-cells. Metabolic Brain Disease, 2015, 30, 911-924.                                                                | 2.9 | 46        |
| 66 | CCR6: A Biomarker for Alzheimer's-like Disease in a Triple Transgenic Mouse Model. Journal of<br>Alzheimer's Disease, 2010, 22, 619-629.                                                                                                      | 2.6 | 44        |
| 67 | TCR peptide therapy in human autoimmune diseases. Neurochemical Research, 2001, 26, 713-730.                                                                                                                                                  | 3.3 | 43        |
| 68 | Gender differences in protection from EAE induced by oral tolerance with a peptide analogue of MBP-Ac1-11. Journal of Neuroscience Research, 1999, 55, 432-440.                                                                               | 2.9 | 41        |
| 69 | Transfer of Severe Experimental Autoimmune Encephalomyelitis by IL-12- and IL-18-Potentiated T Cells Is<br>Estrogen Sensitive. Journal of Immunology, 2003, 170, 4802-4809.                                                                   | 0.8 | 41        |
| 70 | A novel regulatory pathway for autoimmune disease: Binding of partial MHC class II constructs to<br>monocytes reduces CD74 expression and induces both specific and bystander T-cell tolerance. Journal<br>of Autoimmunity, 2013, 40, 96-110. | 6.5 | 41        |
| 71 | The Role of the Spleen in Ischemic Stroke. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 186-187.                                                                                                                                  | 4.3 | 41        |
| 72 | A synthetic androstene derivative and a natural androstene metabolite inhibit relapsing–remitting<br>EAE. Journal of Neuroimmunology, 2002, 130, 128-139.                                                                                     | 2.3 | 40        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A novel mouse model of thromboembolic stroke. Journal of Neuroscience Methods, 2015, 256, 203-211.                                                                                                                                       | 2.5 | 39        |
| 74 | Regulation of Encephalitogenic T Cells with Recombinant TCR Ligands. Journal of Immunology, 2000, 164, 6366-6371.                                                                                                                        | 0.8 | 38        |
| 75 | Treatment of Passive Experimental Autoimmune Encephalomyelitis in SJL Mice with a Recombinant TCR<br>Ligand Induces IL-13 and Prevents Axonal Injury. Journal of Immunology, 2005, 175, 4103-4111.                                       | 0.8 | 37        |
| 76 | Critical evaluation of regulatory T cells in autoimmunity: are the most potent regulatory specificities being ignored?. Immunology, 2008, 125, 1-13.                                                                                     | 4.4 | 37        |
| 77 | RTL therapy for multiple sclerosis: A Phase I clinical study. Journal of Neuroimmunology, 2011, 231, 7-14.                                                                                                                               | 2.3 | 37        |
| 78 | Estrogen Receptor-1 (Esr1) and -2 (Esr2) Regulate the Severity of Clinical Experimental Allergic<br>Encephalomyelitis in Male Mice. American Journal of Pathology, 2004, 164, 1915-1924.                                                 | 3.8 | 36        |
| 79 | Novel Humanized Recombinant T Cell Receptor Ligands Protect the Female Brain After Experimental<br>Stroke. Translational Stroke Research, 2014, 5, 577-585.                                                                              | 4.2 | 36        |
| 80 | PD-L1 Monoclonal Antibody Treats Ischemic Stroke by Controlling Central Nervous System<br>Inflammation. Stroke, 2015, 46, 2926-2934.                                                                                                     | 2.0 | 36        |
| 81 | Reduced Chemokine and Chemokine Receptor Expression in Spinal Cords of TCR BV8S2 Transgenic Mice<br>Protected Against Experimental Autoimmune Encephalomyelitis with BV8S2 Protein. Journal of<br>Immunology, 2000, 164, 3924-3931.      | 0.8 | 34        |
| 82 | Effects of cytokine deficiency on chemokine expression in CNS of mice with EAE. Journal of Neuroscience Research, 2002, 67, 680-688.                                                                                                     | 2.9 | 34        |
| 83 | Sex differences in regulatory cells in experimental stroke. Cellular Immunology, 2017, 318, 49-54.                                                                                                                                       | 3.0 | 34        |
| 84 | Recombinant T-Cell Receptor Ligand (RTL) for Treatment of Multiple Sclerosis: A Double-Blind,<br>Placebo-Controlled, Phase 1, Dose-Escalation Study. Autoimmune Diseases, 2012, 2012, 1-11.                                              | 0.6 | 33        |
| 85 | Treatment with IL-10 producing B cells in combination with E2 ameliorates EAE severity and decreases CNS inflammation in B cell-deficient mice. Metabolic Brain Disease, 2015, 30, 1117-1127.                                            | 2.9 | 33        |
| 86 | Novel feedback loop between M2 macrophages/microglia and regulatory B cells in estrogen-protected<br>EAE mice. Journal of Neuroimmunology, 2017, 305, 59-67.                                                                             | 2.3 | 33        |
| 87 | Specificity of regulatory CD4+CD25+ T cells for self-T cell receptor determinants. Journal of Neuroscience Research, 2004, 76, 129-140.                                                                                                  | 2.9 | 32        |
| 88 | Microglia and astrocyte involvement in neurodegeneration and brain cancer. Journal of Neuroinflammation, 2021, 18, 298.                                                                                                                  | 7.2 | 32        |
| 89 | Lymphokine mRNA expression in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis is associated with a host recruited CD45R hi/CD4+ population during recovery. Journal of Neuroimmunology, 1993, 48, 105-117. | 2.3 | 30        |
| 90 | Ethinyl estradiol treats collagen-induced arthritis in DBA/1LacJ mice by inhibiting the production of TNF-α and IL-1β. Clinical Immunology, 2005, 115, 162-172.                                                                          | 3.2 | 30        |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Cytokine Switch and Bystander Suppression of Autoimmune Responses to Multiple Antigens in<br>Experimental Autoimmune Encephalomyelitis by a Single Recombinant T-Cell Receptor Ligand. Journal<br>of Neuroscience, 2009, 29, 3816-3823.                       | 3.6 | 30        |
| 92  | HLA-DRα1-mMOG-35-55 treatment of experimental autoimmune encephalomyelitis reduces CNS<br>inflammation, enhances M2 macrophage frequency, and promotes neuroprotection. Journal of<br>Neuroinflammation, 2015, 12, 123.                                       | 7.2 | 30        |
| 93  | Sex differences and the role of PPAR alpha in experimental stroke. Metabolic Brain Disease, 2016, 31, 539-547.                                                                                                                                                | 2.9 | 30        |
| 94  | Sex differences in the immune response to experimental stroke: Implications for translational research. Journal of Neuroscience Research, 2017, 95, 437-446.                                                                                                  | 2.9 | 30        |
| 95  | Sex differences in EAE reveal common and distinct cellular and molecular components. Cellular<br>Immunology, 2021, 359, 104242.                                                                                                                               | 3.0 | 30        |
| 96  | Cross-Talk of the CNS With Immune Cells and Functions in Health and Disease. Frontiers in Neurology, 2021, 12, 672455.                                                                                                                                        | 2.4 | 30        |
| 97  | Similar pattern of MCP-1 expression in spinal cords and eyes of Lewis rats with experimental<br>autoimmune encephalomyelitis associated anterior uveitis. Journal of Neuroscience Research, 1997, 50,<br>531-538.                                             | 2.9 | 29        |
| 98  | Regulatory B cells in experimental stroke. Immunology, 2018, 154, 169-177.                                                                                                                                                                                    | 4.4 | 29        |
| 99  | Antibiotics protect against EAE by increasing regulatory and anti-inflammatory cells. Metabolic Brain Disease, 2018, 33, 1599-1607.                                                                                                                           | 2.9 | 29        |
| 100 | Opposing roles for TGF-β1 and TGF-β3 isoforms in experimental autoimmune encephalomyelitis. Cytokine,<br>2004, 25, 45-51.                                                                                                                                     | 3.2 | 28        |
| 101 | An Orally Bioavailable Synthetic Analog of an Active Dehydroepiandrosterone Metabolite Reduces<br>Established Disease in Rodent Models of Rheumatoid Arthritis. Journal of Pharmacology and<br>Experimental Therapeutics, 2009, 329, 1100-1109.               | 2.5 | 28        |
| 102 | Preclinical Evaluation of Recombinant T Cell Receptor Ligand RTL1000 as a Therapeutic Agent in Ischemic Stroke. Translational Stroke Research, 2015, 6, 60-68.                                                                                                | 4.2 | 28        |
| 103 | Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents<br>upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune<br>encephalomyelitis. Journal of Neuroimmunology, 2010, 225, 52-61. | 2.3 | 27        |
| 104 | Recombinant T Cell Receptor Ligand Treatment Improves Neurological Outcome in the Presence of<br>Tissue Plasminogen Activator in Experimental Ischemic Stroke. Translational Stroke Research, 2014, 5,<br>612-617.                                            | 4.2 | 26        |
| 105 | IL-10 producing B cells partially restore E2-mediated protection against EAE in PD-L1 deficient mice.<br>Journal of Neuroimmunology, 2015, 285, 129-136.                                                                                                      | 2.3 | 26        |
| 106 | A novel HLA-DRα1-MOG-35-55 construct treats experimental stroke. Metabolic Brain Disease, 2014, 29,<br>37-45.                                                                                                                                                 | 2.9 | 25        |
| 107 | DRα1-MOG-35-55 Reduces Permanent Ischemic Brain Injury. Translational Stroke Research, 2017, 8, 284-293.                                                                                                                                                      | 4.2 | 25        |
| 108 | A novel neurotherapeutic for multiple sclerosis, ischemic injury, methamphetamine addiction, and<br>traumatic brain injury. Journal of Neuroinflammation, 2019, 16, 14.                                                                                       | 7.2 | 25        |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Estrogen protects both sexes against EAE by promoting common regulatory cell subtypes independent of endogenous estrogen. Metabolic Brain Disease, 2017, 32, 1747-1754.                                                                    | 2.9 | 24        |
| 110 | CNS gene expression pattern associated with spontaneous experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2003, 73, 667-678.                                                                                    | 2.9 | 23        |
| 111 | Treatment of Autoimmune Anterior Uveitis with Recombinant TCR Ligands. , 2006, 47, 2555.                                                                                                                                                   |     | 22        |
| 112 | T Cell Receptor V Genes in Multiple Sclerosis: Increased Use of TCRAV8 and TCRBV5 in MBP-Specific Clones. International Reviews of Immunology, 1999, 18, 9-36.                                                                             | 3.3 | 21        |
| 113 | MHC Class II Derived Recombinant T Cell Receptor Ligands Protect DBA/1LacJ Mice from Collagen-Induced Arthritis. Journal of Immunology, 2008, 180, 1249-1257.                                                                              | 0.8 | 21        |
| 114 | Recombinant T Cell Receptor Ligands Improve Outcome After Experimental Cerebral Ischemia.<br>Translational Stroke Research, 2011, 2, 404-410.                                                                                              | 4.2 | 21        |
| 115 | Role of dihydrotestosterone in post-stroke peripheral immunosuppression after cerebral ischemia.<br>Brain, Behavior, and Immunity, 2011, 25, 685-695.                                                                                      | 4.1 | 20        |
| 116 | Monomeric DR2/MOG-35–55 recombinant TCR ligand treats relapses of experimental encephalomyelitis<br>in DR2 transgenic mice. Clinical Immunology, 2007, 123, 95-104.                                                                        | 3.2 | 19        |
| 117 | Recombinant TCR Ligand Reverses Clinical Signs and CNS Damage of EAE Induced by Recombinant Human MOG. Journal of NeuroImmune Pharmacology, 2010, 5, 231-239.                                                                              | 4.1 | 19        |
| 118 | A Novel Partial MHC Class II Construct, DRmQ, Inhibits Central and Peripheral Inflammatory Responses to Promote Neuroprotection in Experimental Stroke. Translational Stroke Research, 2020, 11, 831-836.                                  | 4.2 | 19        |
| 119 | Congruent Effects of Estrogen and T-Cell Receptor Peptide Therapy on Regulatory T Cells in EAE and MS. International Reviews of Immunology, 2005, 24, 447-477.                                                                             | 3.3 | 18        |
| 120 | Recombinant ΤCell Receptor Ligands: Immunomodulatory, Neuroprotective and Neuroregenerative<br>Effects Suggest Application as Therapy for Multiple Sclerosis. Reviews in the Neurosciences, 2008, 19,<br>327-39.                           | 2.9 | 18        |
| 121 | Different immunological mechanisms govern protection from experimental stroke in young and older mice with recombinant TCR ligand therapy. Frontiers in Cellular Neuroscience, 2014, 8, 284.                                               | 3.7 | 18        |
| 122 | Thrombin mutant W215A/E217A treatment improves neurological outcome and attenuates central<br>nervous system damage in experimental autoimmune encephalomyelitis. Metabolic Brain Disease, 2015,<br>30, 57-65.                             | 2.9 | 18        |
| 123 | Upregulation of CD74 and its potential association with disease severity in subjects with ischemic stroke. Neurochemistry International, 2017, 107, 148-155.                                                                               | 3.8 | 18        |
| 124 | Partial MHC Constructs Treat Thromboembolic Ischemic Stroke Characterized by Early Immune<br>Expansion. Translational Stroke Research, 2016, 7, 70-78.                                                                                     | 4.2 | 17        |
| 125 | Partial MHC class II constructs as novel immunomodulatory therapy for stroke. Neurochemistry<br>International, 2017, 107, 138-147.                                                                                                         | 3.8 | 17        |
| 126 | Myelin basic crotein-specific and TCR V?8.2-Specific T-cell lines from TCR V?8.2 transgenic mice utilize the same V? and V? genes: specificity associated with the V? CDR3-J? region. Journal of Neuroscience Research, 1997, 47, 489-499. | 2.9 | 16        |

| #   | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Diminished frequency of interleukin-10-secreting, T-cell receptor peptide-reactive T cells in multiple<br>sclerosis patients might allow expansion of activated memory T cells bearing the cognate BV gene.<br>Journal of Neuroscience Research, 2001, 66, 171-176. | 2.9 | 16        |
| 128 | Characterization of human platelet binding of recombinant T cell receptor ligand. Journal of Neuroinflammation, 2010, 7, 75.                                                                                                                                        | 7.2 | 16        |
| 129 | Contribution of GPR30 for 1,25 dihydroxyvitamin D3 protection in EAE. Metabolic Brain Disease, 2012, 27, 29-35.                                                                                                                                                     | 2.9 | 16        |
| 130 | DRα1-MOG-35-55 treatment reduces lesion volumes and improves neurological deficits after traumatic brain injury. Metabolic Brain Disease, 2017, 32, 1395-1402.                                                                                                      | 2.9 | 15        |
| 131 | Estrogen-induced compensatory mechanisms protect IL-10-deficient mice from developing EAE. Journal of Neuroinflammation, 2019, 16, 195.                                                                                                                             | 7.2 | 15        |
| 132 | Immunoregulation of Encephalitogenic MBP-NAc1-11-Reactive T Cells by CD4+ TCR-Specific T Cells<br>Involves IL-4, IL-10 and IFN-l <sup>3</sup> . Autoimmunity, 1999, 31, 237-248.                                                                                    | 2.6 | 14        |
| 133 | αB-Crystallin-reactive T cells from knockout mice are not encephalitogenic. Journal of<br>Neuroimmunology, 2006, 176, 51-62.                                                                                                                                        | 2.3 | 14        |
| 134 | Sex-dependent treatment of chronic EAE with partial MHC class II constructs. Journal of Neuroinflammation, 2017, 14, 100.                                                                                                                                           | 7.2 | 14        |
| 135 | Endogenous CD4+BV8S2? T cells from TG BV8S2+ donors confer complete protection against spontaneous experimental encephalomyelitis (Sp-EAE) in TCR transgenic, RAG?/? mice. Journal of Neuroscience Research, 2003, 71, 89-103.                                      | 2.9 | 13        |
| 136 | T-cell hybridoma specific for myelin oligodendrocyte glycoprotein-35-55 peptide produced from<br>HLA-DRB1*1501-transgenic mice. Journal of Neuroscience Research, 2004, 77, 670-680.                                                                                | 2.9 | 13        |
| 137 | Spleen participation in partial MHC class II construct neuroprotection in stroke. CNS Neuroscience and Therapeutics, 2020, 26, 663-669.                                                                                                                             | 3.9 | 13        |
| 138 | GPR30 Forms an Integral Part of E2-Protective Pathway in Experimental Autoimmune Encephalomyelitis.<br>Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2011, 11, 262-274.                                                                        | 0.5 | 13        |
| 139 | 5-Androstenediol Ameliorates Pleurisy, Septic Shock, and Experimental Autoimmune Encephalomyelitis<br>in Mice. Autoimmune Diseases, 2010, 2010, 1-8.                                                                                                                | 0.6 | 11        |
| 140 | Targeting immune co-stimulatory effects of PD-L1 and PD-L2 might represent an effective therapeutic strategy in stroke. Frontiers in Cellular Neuroscience, 2014, 8, 228.                                                                                           | 3.7 | 11        |
| 141 | Adoptive transfer of immune subsets prior to MCAO does not exacerbate stroke outcome in splenectomized mice. Journal of Systems and Integrative Neuroscience, 2015, 1, 20-28.                                                                                       | 0.6 | 11        |
| 142 | A synthetic androstene analogue inhibits collagen-induced arthritis in the mouse. Clinical<br>Immunology, 2004, 110, 181-190.                                                                                                                                       | 3.2 | 10        |
| 143 | Uncovering the Rosetta Stone: Report from the First Annual Conference on Key Elements in<br>Translating Stroke Therapeutics from Pre-Clinical to Clinical. Translational Stroke Research, 2018, 9,<br>258-266.                                                      | 4.2 | 10        |
| 144 | Loss of PPARα perpetuates sex differences in stroke reflected by peripheral immune mechanisms.<br>Metabolic Brain Disease, 2016, 31, 683-692.                                                                                                                       | 2.9 | 8         |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Sex differences in the therapeutic effects of anti-PDL2 neutralizing antibody on stroke. Metabolic<br>Brain Disease, 2019, 34, 1705-1712.                                                                                                | 2.9 | 8         |
| 146 | 17Beta-estradiol treatment profoundly down-regulates gene expression in spinal cord tissue in mice<br>protected from experimental autoimmune encephalomyelitis. Archivum Immunologiae Et Therapiae<br>Experimentalis, 2003, 51, 185-93.  | 2.3 | 8         |
| 147 | Human Cd8+ T Cell Clone Regulates Autologous Cd4+ Myelin Basic Protein Specific T Cells.<br>Autoimmunity, 1992, 14, 111-119.                                                                                                             | 2.6 | 7         |
| 148 | Neonatal exposure of TCR BV8S2 transgenic mice to recombinant TCR BV8S2 results in reduced T cell proliferation and elevated antibody response to BV8S2, and increased severity of EAE. , 1998, 52, 750-756.                             |     | 7         |
| 149 | Treatments targeting the T cell receptor (TCR): effects of TCR peptide-specific T cells on activation,<br>migration, and encephalitogenicity of myelin basic protein-specific T cells. Seminars in<br>Immunopathology, 1999, 21, 77-90.  | 4.0 | 7         |
| 150 | Human TCR as Antigen: Homologies and Potentially Cross-Reactive HLA-DR2-Restricted Epitopes Within the AV and BV CDR2 Loops. Critical Reviews in Immunology, 2000, 20, 28.                                                               | 0.5 | 7         |
| 151 | RTL551 Treatment of EAE Reduces CD226 and T-bet+ CD4 T Cells in Periphery and Prevents Infiltration of T-bet+ IL-17, IFN-Î <sup>3</sup> Producing T Cells into CNS. PLoS ONE, 2011, 6, e21868.                                           | 2.5 | 7         |
| 152 | Gilt required for RTL550-CYS-MOG to treat experimental autoimmune encephalomyelitis. Metabolic<br>Brain Disease, 2012, 27, 143-149.                                                                                                      | 2.9 | 6         |
| 153 | Brief report: Enhanced DRα1-mMOG-35-55 treatment of severe EAE in MIF-1-deficient male mice. Cellular<br>Immunology, 2021, 370, 104439.                                                                                                  | 3.0 | 5         |
| 154 | Effects of vaccination with T cell receptor peptides: Epitope switching to a possible disease-protective determinant of myelin basic protein that is cross-reactive with a TCR BV peptide. Immunology and Cell Biology, 1998, 76, 83-90. | 2.3 | 4         |
| 155 | Modeling Immunity and Inflammation in Stroke. Stroke, 2014, 45, e181-2.                                                                                                                                                                  | 2.0 | 4         |
| 156 | Surviving the storm: Dealing with COVID-19. Cellular Immunology, 2020, 354, 104153.                                                                                                                                                      | 3.0 | 4         |
| 157 | Tissue-Dependent Expression of Estrogen Receptor β in 17β -Estradiol- Mediated Attenuation of<br>Autoimmune CNS Inflammation~!2010-04-23~!2010-06-30~!2010-07-14~!. The Open Autoimmunity Journal,<br>2010, 2, 197-204.                  | 0.4 | 4         |
| 158 | Ganglioside modulation of CD4 does not block T-helper cell function as compared to antagonism by anti-CD4 antibody. Drug Development Research, 1992, 25, 315-323.                                                                        | 2.9 | 3         |
| 159 | Stroke and other cerebrovascular diseases. Neurochemistry International, 2017, 107, 1-3.                                                                                                                                                 | 3.8 | 3         |
| 160 | Major histocompatibility complex Class II-based therapy for stroke. Brain Circulation, 2021, 7, 37.                                                                                                                                      | 1.8 | 3         |
| 161 | Similar pattern of MCP-1 expression in spinal cords and eyes of Lewis rats with experimental autoimmune encephalomyelitis associated anterior uveitis. , 1997, 50, 531.                                                                  |     | 1         |
| 162 | Tyrphostin A9 protects axons in experimental autoimmune encephalomyelitis through activation of ERKs. Life Sciences, 2022, 294, 120383.                                                                                                  | 4.3 | 1         |

| #   | Article                                                                 | IF | CITATIONS |
|-----|-------------------------------------------------------------------------|----|-----------|
| 163 | Systemic Immune Responses after Experimental Stroke. , 2014, , 153-176. |    | Ο         |