
Pavel B Ginzburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7045354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hardware RFID Security for Preventing Far-Field Attacks. IEEE Transactions on Antennas and Propagation, 2022, 70, 2199-2204.	3.1	9
2	Circular wire-bundle superscatterer. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 279, 108065.	1.1	5
3	Single GaP nanowire nonlinear characterization with the aid of an optical trap. Nanoscale, 2022, 14, 993-1000.	2.8	11
4	Green ultra-wideband antenna utilizing Mie resonances in cactus. Applied Physics Letters, 2022, 120, .	1.5	0
5	Extraordinary broadband impedance matching in highly dispersive media - the white light cavity approach. Optics Express, 2022, 30, 5192.	1.7	4
6	Self-aligning roly-poly RFID tag. Scientific Reports, 2022, 12, 2140.	1.6	7
7	Naked eye direction of arrival estimation with a Fresnel lens. Scientific Reports, 2022, 12, 2479.	1.6	3
8	Simple low-cost 3D metal printing via plastic skeleton burning. Scientific Reports, 2022, 12, 7963.	1.6	2
9	High-Permittivity Ceramic Tags Miniaturization for Long-Range RFID Applications. , 2021, , .		1
10	Golden Vaterite as a Mesoscopic Metamaterial for Biophotonic Applications. Advanced Materials, 2021, 33, e2008484.	11.1	27
11	Long-Range Miniaturized Ceramic RFID Tags. IEEE Transactions on Antennas and Propagation, 2021, 69, 3125-3131.	3.1	25
12	Omnidirectional miniature RFID tag. Applied Physics Letters, 2021, 119, 033503.	1.5	9
13	Multipole Engineering of Attractiveâ^'Repulsive and Bending Optical Forces. Advanced Photonics Research, 2021, 2, 2100082.	1.7	12
14	Modifying light–matter interactions with perovskite nanocrystals inside antiresonant photonic crystal fiber. Photonics Research, 2021, 9, 1462.	3.4	10
15	Amplified spontaneous emission and gain in highly concentrated Rhodamine-doped peptide derivative. Scientific Reports, 2021, 11, 17609.	1.6	6
16	Multicolor Phenylenediamine Carbon Dots for Metal-Ion Detection with Picomolar Sensitivity. ACS Applied Nano Materials, 2021, 4, 9919-9931.	2.4	31
17	Chipless wireless temperature sensor based on quasi-BIC resonance. Applied Physics Letters, 2021, 119, .	1.5	14
18	Anapole-enabled RFID security against far-field attacks. Nanophotonics, 2021, 10, 4409-4418.	2.9	5

#	Article	IF	CITATIONS
19	Generalized Kerker effect in dielectric antennas for enhanced backscattering modulation. Journal of Physics: Conference Series, 2021, 2015, 012136.	0.3	0
20	Miniaturized all-angle accessible RIFD tag. Journal of Physics: Conference Series, 2021, 2015, 012092.	0.3	0
21	Nanoscale Tunable Optical Binding Mediated by Hyperbolic Metamaterials. ACS Photonics, 2020, 7, 425-433.	3.2	44
22	Multispectral sensing of biological liquids with hollow-core microstructured optical fibres. Light: Science and Applications, 2020, 9, 173.	7.7	32
23	Experimental Observation of Intrinsic Light Localization in Photonic Icosahedral Quasicrystals. Advanced Optical Materials, 2020, 8, 2001170.	3.6	18
24	Wire resonator as a broadband Huygens superscatterer. Physical Review B, 2020, 102, .	1.1	16
25	Dynamically reconfigurable metamaterial-based scatterer. , 2020, , .		1
26	Multipole engineering for enhanced backscattering modulation. Physical Review B, 2020, 102, .	1.1	15
27	Efficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators. Scientific Reports, 2020, 10, 21854.	1.6	1
28	4D Optically Reconfigurable Volumetric Metamaterials. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000159.	1.2	7
29	Nonlinear Nanophotonic Devices: Nonlinear Nanophotonic Circuitry: Tristable and Astable Multivibrators and Chaos Generator (Laser Photonics Rev. 14(3)/2020). Laser and Photonics Reviews, 2020, 14, 2070018.	4.4	0
30	Efficient computation of arbitrary beam scattering on a sphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 106887.	1.1	4
31	Diffusion-inspired time-varying phosphorescent decay in a nanostructured environment. Physical Review B, 2020, 101, .	1.1	9
32	Nonlinear Nanophotonic Circuitry: Tristable and Astable Multivibrators and Chaos Generator. Laser and Photonics Reviews, 2020, 14, 1900304.	4.4	9
33	Memory effects in scattering from accelerating bodies. Advanced Photonics, 2020, 2, .	6.2	3
34	Auxiliary Optomechanical Tools for 3D Cell Manipulation. Micromachines, 2020, 11, 90.	1.4	14
35	Broad-band impedance matching of dispersive waveguides using exceptional points and white light cavities. , 2020, , .		0
36	Novel concept for contactless all-optical temperature measurement based on diffusion-inspired phosphorescent decay in nanostructured environment. AIP Conference Proceedings, 2020, , .	0.3	0

#	Article	IF	CITATIONS
37	Optical properties of icosahedral quasicrystals. AIP Conference Proceedings, 2020, , .	0.3	0
38	Light-Induced particle binding assisted by metamaterial substrates. AIP Conference Proceedings, 2020, ,	0.3	0
39	Broad-band impedance matching of dispersive waveguides - the white light cavity approach. , 2020, , .		0
40	Singlet–Triplet Transition Rate Enhancement inside Hyperbolic Metamaterials. Laser and Photonics Reviews, 2019, 13, 1900101.	4.4	10
41	Controllable Synthesis of Calcium Carbonate with Different Geometry: Comprehensive Analysis of Particle Formation, Cellular Uptake, and Biocompatibility. ACS Sustainable Chemistry and Engineering, 2019, 7, 19142-19156.	3.2	71
42	Broadband resonant calibration-free complex permittivity retrieval of liquid solutions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 235, 127-131.	1.1	3
43	Biological Kerker Effect Boosts Light Collection Efficiency in Plants. Nano Letters, 2019, 19, 7062-7071.	4.5	59
44	Flexible metalized tubes for electromagnetic waveguiding. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 232, 152-155.	1.1	4
45	Microstructured Optical Waveguide-Based Endoscopic Probe Coated with Silica Submicron Particles. Materials, 2019, 12, 1424.	1.3	10
46	Volumetric 3Dâ€Printed Antennas, Manufactured via Selective Polymer Metallization. Physica Status Solidi - Rapid Research Letters, 2019, 13, .	1.2	19
47	Optical binding via surface plasmon polariton interference. Physical Review B, 2019, 99, .	1.1	52
48	Partially coherent radar unties range resolution from bandwidth limitations. Nature Communications, 2019, 10, 1423.	5.8	26
49	Nonlinear Nanoplasmonics. Springer Series in Optical Sciences, 2019, , 267-316.	0.5	2
50	Selective Metallization of Graphene-based Polymers for Volumetric 3D-printed Antennas. , 2019, , .		2
51	Coupled micro-Doppler signatures of closely located targets. Physical Review B, 2019, 100, .	1.1	5
52	Numerical and analytical models for calculating optical forces near auxiliary plasmonic substrates. AIP Conference Proceedings, 2019, , .	0.3	0
53	Bioinspired Amyloid Nanodots with Visible Fluorescence. Advanced Optical Materials, 2019, 7, 1801400.	3.6	26
54	Enabling magnetic resonance imaging of hollow-core microstructured optical fibers via nanocomposite coating. Optics Express, 2019, 27, 9868.	1.7	13

#	Article	IF	CITATIONS
55	Secondâ€Harmonic Generation from Hyperbolic Plasmonic Nanorod Metamaterial Slab. Laser and Photonics Reviews, 2018, 12, 1700189.	4.4	43
56	Evidence of High-Order Nonlinearities in Supercontinuum White-Light Generation from a Gold Nanofilm. ACS Photonics, 2018, 5, 1927-1932.	3.2	20
57	Bifocal Fresnel Lens Based on the Polarization-Sensitive Metasurface. IEEE Transactions on Antennas and Propagation, 2018, 66, 2650-2654.	3.1	28
58	Freeâ€electron Optical Nonlinearities in Plasmonic Nanostructures: A Review of the Hydrodynamic Description. Laser and Photonics Reviews, 2018, 12, 1700082.	4.4	79
59	Quantum Sensing: Quantum Sensing of Motion in Colloids via Time-Dependent Purcell Effect (Laser) Tj ETQq1 1	0.784314 4.4	rgBT /Overlo
60	Non-Mie optical resonances in anisotropic biomineral nanoparticles. Nanoscale, 2018, 10, 21031-21040.	2.8	15
61	Artificial localized magnon resonances in subwavelength meta-particles. Applied Physics Letters, 2018, 113, .	1.5	21
62	Förster Resonance Energy Transfer inside Hyperbolic Metamaterials. ACS Photonics, 2018, 5, 4594-4603.	3.2	24
63	Ultrafast cryptography with indefinitely switchable optical nanoantennas. Light: Science and Applications, 2018, 7, 77.	7.7	18
64	Giant magnetoelectric field separation via anapole-type states in high-index dielectric structures. Physical Review B, 2018, 98, .	1.1	49
65	Optomechanical Manipulation with Hyperbolic Metasurfaces. ACS Photonics, 2018, 5, 4371-4377.	3.2	62
66	Resonant metasurface with tunable asymmetric reflection. Applied Physics Letters, 2018, 113, .	1.5	17
67	Optical Manipulation along an Optical Axis with a Polarization Sensitive Meta-Lens. Nano Letters, 2018, 18, 5024-5029.	4.5	55
68	Quantum Sensing of Motion in Colloids via Timeâ€Dependent Purcell Effect. Laser and Photonics Reviews, 2018, 12, 1800042.	4.4	5
69	Low-frequency nonlocal and hyperbolic modes in corrugated wire metamaterials. Optics Express, 2018, 26, 17541.	1.7	15
70	Circular dichroism enhancement in plasmonic nanorod metamaterials. Optics Express, 2018, 26, 17841.	1.7	52
71	Generalization of the optical theorem: experimental proof for radially polarized beams. Light: Science and Applications, 2018, 7, 36.	7.7	23
72	Micro-Doppler frequency comb generation by rotating wire scatterers. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 190, 7-12.	1.1	11

#	Article	IF	CITATIONS
73	Plasmon-assisted optical trapping and anti-trapping. Light: Science and Applications, 2017, 6, e16258-e16258.	7.7	69
74	Spontaneous Emission in Nonlocal Metamaterials with Spatial Dispersion. Springer Series in Solid-state Sciences, 2017, , 237-277.	0.3	1
75	Spontaneous emission in non-local materials. Light: Science and Applications, 2017, 6, e16273-e16273.	7.7	75
76	Granular Permittivity Representation in Extremely Near-Field Light–Matter Interaction Processes. ACS Photonics, 2017, 4, 2137-2143.	3.2	3
77	Asymmetric micro-Doppler frequency comb generation via magnetoelectric coupling. Physical Review B, 2017, 95, .	1.1	9
78	Temperature and Phase Transition Sensing in Liquids with Fluorescent Probes. MRS Advances, 2017, 2, 2391-2399.	0.5	7
79	Optical antitrapping of nanoparticles in Gaussian beam due to surface modes of a substrate. , 2017, , .		Ο
80	Accelerating spontaneous emission in open resonators. Annalen Der Physik, 2016, 528, 571-579.	0.9	9
81	Enhancement of artificial magnetism via resonant bianisotropy. Scientific Reports, 2016, 6, 22546.	1.6	42
82	Asymmetric backscattering from the hybrid magneto-electric meta particle. Applied Physics Letters, 2016, 109, .	1.5	43
83	Plasmonic substrates for optical tweezers. , 2016, , .		Ο
84	Resonant meta-atoms with nonlinearities on demand. Applied Physics Letters, 2016, 109, .	1.5	18
85	Transformation quantum optics: designing spontaneous emission using coordinate transformations. Journal of Optics (United Kingdom), 2016, 18, 044029.	1.0	16
86	Controlling electromagnetic scattering with wire metamaterial resonators. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 1910.	0.8	16
87	Cavity quantum electrodynamics in application to plasmonics and metamaterials. Reviews in Physics, 2016, 1, 120-139.	4.4	43
88	Optical forces in nanorod metamaterial. Scientific Reports, 2015, 5, 15846.	1.6	44
89	Purcell effect in hyperbolic metamaterial resonators. Physical Review B, 2015, 92, .	1.1	62
90	Giant Optical Activity of Quantum Dots, Rods and Disks with Screw Dislocations. Scientific Reports, 2015, 5, 14712.	1.6	49

6

#	Article	IF	CITATIONS
91	Hyperbolic metamaterial antenna for second-harmonic generation tomography. Optics Express, 2015, 23, 30730.	1.7	56
92	Optical cloaking with ENZ-metamaterials. , 2015, , .		4
93	Direct measurements of magnetic and electric optical responses from silicon nanoparticles. , 2015, , .		0
94	Emulation of complex optical phenomena with radio waves: Tailoring scattering characteristics with wire metamaterial. , 2015, , .		1
95	Optical pulling forces in hyperbolic metamaterials. Physical Review A, 2015, 91, .	1.0	53
96	Applications of plasmonics: general discussion. Faraday Discussions, 2015, 178, 435-466.	1.6	17
97	Quantum plasmonics, gain and spasers: general discussion. Faraday Discussions, 2015, 178, 325-334.	1.6	4
98	Probing magnetic and electric optical responses of silicon nanoparticles. Applied Physics Letters, 2015, 106, .	1.5	62
99	Compton-Like Polariton Scattering in Hyperbolic Metamaterials. Physical Review Letters, 2015, 114, 185501.	2.9	18
100	Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials. Physical Review B, 2015, 91, .	1.1	45
101	Nonperturbative Hydrodynamic Model for Multiple Harmonics Generation in Metallic Nanostructures. ACS Photonics, 2015, 2, 8-13.	3.2	79
102	Light emission in nonlocal plasmonic metamaterials. Faraday Discussions, 2015, 178, 61-70.	1.6	22
103	Light Emission in Nonlocal Plasmonic Nanowire Metamaterials. , 2015, , .		Ο
104	Classical and Quantum Opto-mechanics with Plasmonics and Metamaterials. , 2014, , .		0
105	Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry. Optics Express, 2014, 22, 10987.	1.7	71
106	Surface Nonlinearities in Plasmonics. , 2014, , .		0
107	Impact of nonradiative line broadening on emission in photonic and plasmonic cavities. Physical Review A, 2014, 90, .	1.0	8
108	Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nature Communications, 2014, 5, 3226.	5.8	229

#	Article	IF	CITATIONS
109	Magnetic dipole radiation tailored by substrates: numerical investigation. Optics Express, 2014, 22, 10693.	1.7	43
110	Nano-opto-mechanical effects in plasmonic waveguides. Laser and Photonics Reviews, 2014, 8, 131-136.	4.4	42
111	Near-field Interference in Optics and RF. , 2014, , .		0
112	Self-Induced Torque in Hyperbolic Metamaterials. Physical Review Letters, 2013, 111, 036804.	2.9	48
113	Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Optics Express, 2013, 21, 14907.	1.7	119
114	Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials. Applied Physics Letters, 2013, 102, .	1.5	33
115	Localized Surface Plasmon Resonances in Spatially Dispersive Nano-Objects: Phenomenological Treatise. ACS Nano, 2013, 7, 4334-4342.	7.3	39
116	Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes. Science, 2013, 340, 328-330.	6.0	571
117	Optomechanical "nonlinear" light modulation on nano-scales. , 2013, , .		Ο
118	Cascaded second-order surface plasmon solitons due to intrinsic metal nonlinearity. New Journal of Physics, 2013, 15, 013031.	1.2	31
119	Linewidth enhancement in spasers and plasmonic nanolasers. Optics Express, 2013, 21, 2147.	1.7	18
120	Non-exponential decay of dark localized surface plasmons. Optics Express, 2012, 20, 6720.	1.7	13
121	Different-color photons from chaotic sources interfering in pairs. , 2012, , .		Ο
122	Analogue of the Quantum Hanle Effect and Polarization Conversion in Non-Hermitian Plasmonic Metamaterials. Nano Letters, 2012, 12, 6309-6314.	4.5	21
123	Tailoring and enhancing spontaneous two-photon emission using resonant plasmonic nanostructures. Physical Review A, 2012, 86, .	1.0	34
124	Microscopic model of Purcell enhancement in hyperbolic metamaterials. Physical Review B, 2012, 86, .	1.1	99
125	Nonlinearly coupled localized plasmon resonances: Resonant second-harmonic generation. Physical Review B, 2012, 86, .	1.1	70
126	Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas. Nano Letters, 2011, 11, 220-224.	4.5	24

#	Article	IF	CITATIONS
127	Applications of two-photon processes in semiconductor photonic devices: invited review. Semiconductor Science and Technology, 2011, 26, 083001.	1.0	81
128	Resonances On-Demand for Plasmonic Nano-Particles. Nano Letters, 2011, 11, 2329-2333.	4.5	69
129	Indistinguishable Photon Pairs from Independent True Chaotic Sources. Physical Review Letters, 2011, 107, 253601.	2.9	21
130	Plasmonic Nanoantennas for Broad-Band Enhancement of Two-Photon Emission from Semiconductors. Nano Letters, 2010, 10, 1848-1852.	4.5	72
131	Photon hole nondemolition measurement scheme by electromagnetically induced transparency. Physical Review A, 2010, 81, .	1.0	4
132	Two Photon Emission, Entanglement and Gain from Semiconductors at Room Temperature. , 2010, , .		0
133	Photon-energy qubit generation by spontaneous emission in a V-type system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 105502.	0.6	5
134	Efficient coupling and field enhancement for the nano-scale: plasmonic needle. Optics Express, 2010, 18, 14079.	1.7	36
135	Nonlocal ponderomotive nonlinearity in plasmonics. Optics Letters, 2010, 35, 1551.	1.7	70
136	Concave Plasmonic Particles: Broad-Band Geometrical Tunability in the Near-Infrared. Nano Letters, 2010, 10, 1405-1408.	4.5	50
137	Nano-Coupling and Enhancement in Plasmonic Conical Needle. , 2010, , .		Ο
138	Broadband Enhancement of Two-Photon Emission from Semiconductors by Plasmonic Nano-Antennas. , 2010, , .		0
139	Field enhancement by efficient nano-coupling to plasmonic conical needle. , 2010, , .		Ο
140	Measurement and Model of the Infrared Two-Photon Emission Spectrum of GaAs. Physical Review Letters, 2009, 103, 023601.	2.9	24
141	Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments. Journal of Optics, 2009, 11, 114024.	1.5	7
142	Photonic logic by linear unidirectional interference. Optics Express, 2009, 17, 4251.	1.7	9
143	Photon energy entanglement characterization by electronic transition interference. Optics Express, 2009, 17, 21280.	1.7	8
144	Plasmonics Self-Focusing by Nonlocal Ponderomotive Nonlinearity in Metals. , 2009, , .		0

9

#	Article	IF	CITATIONS
145	Nonlinear Surface Plasmons in 'Semiconductor THz Photonic Circuits' using Ponderomotive Forces. , 2009, , .		0
146	Two-Surface Plasmon Emission from Semiconductor by Coupling to Nanoantennas. , 2009, , .		0
147	Observation of two-photon emission from semiconductors. Nature Photonics, 2008, 2, 238-241.	15.6	123
148	Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures. Journal of Applied Physics, 2008, 103, 083105.	1,1	22
149	Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification. Journal of Applied Physics, 2008, 104, 063513.	1.1	19
150	Breakdown of Surface Plasmon Enhancement due to Ponderomotive Forces. , 2008, , .		1
151	Hyperentanglement source by intersubband two-photon emission from semiconductor quantum wells. Optics Letters, 2008, 33, 1168.	1.7	13
152	Infrared single-photon detection by two-photon absorption in silicon. Physical Review B, 2008, 77, .	1.1	21
153	Towards Hyperentanglement via Semiconductor Two- Photon Emission. , 2008, , .		0
154	Photon Energy Entanglement Characterization by Electronic Transition Interference. , 2008, , .		0
155	Photon-Hole Nondemolition Measurement by Quantum Interference. , 2008, , .		0
156	Semiconductor Two-Photon Laser: Ultra-Short Pulses and Wide Tuneability. , 2008, , .		0
157	Photon-Hole Quantum Nondemolition Measurement. , 2008, , .		1
158	Nonlinear Propagation and Slow Light of Surface Plasmon Polaritons due to Ponderomotive Forces. , 2008, , .		0
159	Towards Hyperentanglement via Semiconductor Two-Photon Emission. , 2008, , .		0
160	Non-Hermitian Quantum Mechanics for Linear Photonic Logic. , 2008, , .		0
161	Rigorous Vectorial Plasmonic Diffraction and the Double-Slit Experiment. , 2008, , .		0
162	Nonlinear compression towards few-cycle pulses in two-photon semiconductor amplifiers. , 2008, , .		0

#	Article	IF	CITATIONS
163	Nonlinear Surface Plasmon Polaritons and the Ponderomotive Force. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	Ο
164	High-rate entanglement source via two-photon emission from semiconductor quantum wells. Physical Review B, 2007, 76, .	1.1	36
165	Semiconductor Devices Based on Two-Photon Emission. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
166	Metal-less optical surface plasmon polariton. , 2007, , .		0
167	Two-photon based semiconductor entanglement-source for quantum communications. , 2007, , .		Ο
168	Semiconductor Two-Photon Emission Sources. Optics and Photonics News, 2007, 18, 23.	0.4	0
169	Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching. Optics Express, 2007, 15, 6762.	1.7	87
170	Self Focusing of Surface Plasmon Polariton and Nonlinear Response of Plasmonic Waveguiding by Ponderomotive Forces. , 2007, , .		0
171	Two-photon based semiconductor entanglement-source for quantum communications. , 2007, , .		0
172	Entangled Photon Spectroscopy and Communications Based on Semiconductor Two-Photon Process. , 2007, , .		0
173	Widely Tunable Low-Threshold Semiconductor Two-Photon Laser. , 2007, , .		0
174	Nonlinear Optics in QWs with Tunable Local Phasematching. , 2007, , .		0
175	Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. Optics Letters, 2006, 31, 3288.	1.7	138
176	Photonic switching in waveguides using spatial concepts inspired by EIT. Optics Express, 2006, 14, 11312.	1.7	17
177	Slow light and voltage control of group velocity in resonantly coupled quantum wells. Optics Express, 2006, 14, 12467.	1.7	27
178	EIT with tunneling for slow light generation. , 2006, , .		1
179	Two-Photon Based Semiconductor Entanglement-Sources and Detectors for Quantum Communications. , 2006, , .		Ο
180	Novel Metal-less Optical Left Handed Material by Coupled Semiconductor Quantum Dots. , 2006, , .		0