
Juan Carlos Zenteno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7045108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel <i>CHRDL1</i> mutation causing X-linked megalocornea in a family with mild anterior segment manifestations in carrier females. Ophthalmic Genetics, 2022, 43, 224-229.	1.2	1
2	Autosomal Dominant MÃ $^1\!\!/$ ller Cell Sheen Dystrophy. Retina, 2022, Publish Ahead of Print, .	1.7	0
3	A new missense variant in <i>RAB3GAP2</i> in a family with muscular dystrophy–short stature and defective autophagy: An expansion of the micro/Martsolf spectrum or a new phenotype?. American Journal of Medical Genetics, Part A, 2022, , .	1.2	0
4	Detailed phenotypic description of stromal corneal dystrophy in a large pedigree carrying the uncommon TGFBI p.Ala546Asp pathogenic variant. Ophthalmic Genetics, 2022, , 1-5.	1.2	0
5	Next-Generation Sequencing Identifies a Homozygous Nonsense p.Tyr370* Mutation of the TMC6 Gene in a Mexican Pedigree with Epidermodysplasia Verruciformis. Revista De Investigacion Clinica, 2021, 73, .	0.4	1
6	Extensive genic and allelic heterogeneity underlying inherited retinal dystrophies in Mexican patients molecularly analyzed by nextâ€generation sequencing. Molecular Genetics & Genomic Medicine, 2020, 8, .	1.2	30
7	Exome sequencing identifies a SREBF1 recurrent ARG557CYS mutation as the cause of hereditary mucoepithelial dysplasia in a family with high clinical variability. American Journal of Medical Genetics, Part A, 2020, 182, 2773-2777.	1.2	4
8	Assessment of <i>CFH</i> and <i>HTRA1</i> polymorphisms in age-related macular degeneration using classic and machine-learning approaches. Ophthalmic Genetics, 2020, 41, 539-547.	1.2	2
9	Autofluorescence in female carriers with choroideremia: A familial case with a novel mutation in the <i>CHM</i> gene. Ophthalmic Genetics, 2020, 41, 625-628.	1.2	2
10	Clinical and molecular evidence of possible digenic inheritance for MFN2/GDAP1 genes in Charcot-Marie-Tooth disease. Neuromuscular Disorders, 2020, 30, 986-990.	0.6	8
11	Previously undescribed phenotypic findings and novel ACTG1 gene pathogenic variants in Baraitser-Winter cerebrofrontofacial syndrome. European Journal of Medical Genetics, 2020, 63, 103877.	1.3	7
12	Extracranial midline defects in a patient with craniofrontonasal syndrome with a novel EFNB1 mutation. American Journal of Medical Genetics, Part A, 2020, 182, 1223-1229.	1.2	7
13	Clinical, histopathological, and in silico pathogenicity analyses in a pedigree with familial amyloidosis of the Finnish type (Meretoja syndrome) caused by a novel gelsolin mutation. Molecular Vision, 2020, 26, 345-354.	1.1	4
14	Clinical characterization and identification of five novel FOXL2 pathogenic variants in a cohort of 12 Mexican subjects with the syndrome of blepharophimosis-ptosis-epicanthus inversus. Gene, 2019, 706, 62-68.	2.2	6
15	Expansion of the phenotypic spectrum and description of molecular findings in a cohort of patients with oculocutaneous mosaic RASopathies. Molecular Genetics & Genomic Medicine, 2019, 7, e625.	1.2	39
16	Mutation update: <i>TGFBI</i> pathogenic and likely pathogenic variants in corneal dystrophies. Human Mutation, 2019, 40, 675-693.	2.5	28
17	The Relevance of Cataract as a Risk Factor for Age-Related Macular Degeneration: A Machine Learning Approach. Applied Sciences (Switzerland), 2019, 9, 5550.	2.5	1
18	Characterization of novel GCDH pathogenic variants causing glutaric aciduria type 1 in the southeast of Mexico. Molecular Genetics and Metabolism Reports, 2019, 21, 100533	1.1	6

JUAN CARLOS ZENTENO

#	Article	IF	CITATIONS
19	Long-Term Effects of Gene Therapy in a Novel Mouse Model of Human <i>MFRP</i> -Associated Retinopathy. Human Gene Therapy, 2019, 30, 632-650.	2.7	10
20	Giant Ocular Lipodermoid Cyst in Encephalocraniocutaneous Lipomatosis: Surgical Treatment and Genetic Analysis. American Journal of Case Reports, 2019, 20, 1566-1571.	0.8	1
21	Extension of the mutational and clinical spectrum of <i>SOX2</i> related disorders: Description of six new cases and a novel association with suprasellar teratoma. American Journal of Medical Genetics, Part A, 2018, 176, 2710-2719.	1.2	7
22	Next generation sequencingâ€based molecular diagnosis in familial congenital cataract expands the mutational spectrum in known congenital cataract genes. American Journal of Medical Genetics, Part A, 2018, 176, 2637-2645.	1.2	22
23	Significant Association Between Variant in SGCD and Age-Related Macular Degeneration. Genes, 2018, 9, 467.	2.4	2
24	Identification of novel pathogenic variants and novel gene-phenotype correlations in Mexican subjects with microphthalmia and/or anophthalmia by next-generation sequencing. Journal of Human Genetics, 2018, 63, 1169-1180.	2.3	16
25	D14 repeat polymorphism of the asporin gene is associated with primary osteoarthritis of the knee in a Mexican Mestizo population. International Journal of Rheumatic Diseases, 2017, 20, 1935-1941.	1.9	11
26	Novel FREM1 mutations in a patient with MOTA syndrome: Clinical findings, mutation update and review of FREM1 -related disorders literature. European Journal of Medical Genetics, 2017, 60, 190-194.	1.3	16
27	Genome-wide mRNA analysis reveals a TUBD1 isoform profile as a potential biomarker for diabetic retinopathy development. Experimental Eye Research, 2017, 155, 99-106.	2.6	10
28	<scp><i>PAX6</i>scp> allelic heterogeneity in <scp>Mexican</scp> congenital aniridia patients: expanding the mutational spectrum with seven novel pathogenic variants. Clinical and Experimental Ophthalmology, 2017, 45, 875-883.</scp>	2.6	5
29	The clinical implications of molecular monitoring and analyses of inherited retinal diseases. Expert Review of Molecular Diagnostics, 2017, 17, 1009-1021.	3.1	7
30	Vortex Pattern of Corneal Deposits in Granular Corneal Dystrophy Associated With the p.(Arg555Trp) Mutation in TGFBI. Cornea, 2017, 36, 210-216.	1.7	4
31	Epidemiological and Molecular Characterization of a Mexican Population Isolate with High Prevalence of Limb-Girdle Muscular Dystrophy Type 2A Due to a Novel Calpain-3 Mutation. PLoS ONE, 2017, 12, e0170280.	2.5	16
32	Exome sequencing identifies a de novo frameshift mutation in the imprinted gene <i>ZDBF2</i> in a sporadic patient with Nasopalpebral Lipomaâ€coloboma syndrome. American Journal of Medical Genetics, Part A, 2016, 170, 1934-1937.	1.2	4
33	TP63 mutation in a patient with acroâ€dermoâ€ungualâ€lacrimalâ€tooth syndrome: Additional evidence of molecular overlap of the ADULT and EEC syndromes. American Journal of Medical Genetics, Part A, 2016, 170, 1635-1638.	1.2	4
34	Tietz/Waardenburg type 2A syndrome associated with posterior microphthalmos in two unrelated patients with novel <i>MITF</i> gene mutations. American Journal of Medical Genetics, Part A, 2016, 170, 3294-3297.	1.2	11
35	The PTPN22 R620W polymorphism in anti-neutrophil cytoplasmic antibody–associated vasculitis in Mexican Mestizos: Table 1. Rheumatology, 2016, 55, 2271-2273.	1.9	3
36	Machine Learning Method to Establish the Connection Between Age Related Macular Degeneration and Some Genetic Variations. Lecture Notes in Computer Science, 2016, , 28-39.	1.3	1

JUAN CARLOS ZENTENO

#	Article	IF	CITATIONS
37	Cerebral hemihypoplasia and nevus flammeus in a child with oromandibular limb hypogenesis syndrome type III. Journal of Pediatric Genetics, 2015, 02, 043-047.	0.7	0
38	<i>SOX2</i> anophthalmia syndrome and dental anomalies. American Journal of Medical Genetics, Part A, 2015, 167, 2830-2833.	1.2	8
39	Review and update on the molecular basis of Leber congenital amaurosis. World Journal of Clinical Cases, 2015, 3, 112.	0.8	94
40	Characterization and mRNA expression analysis of a novel ARG1 splicing mutation causing hyperargininemia. Clinical Biochemistry, 2015, 48, 1273-1276.	1.9	4
41	Acroâ€spondyloâ€pubic dysostosis associated with cataracts, microcephaly, and normal intelligence. American Journal of Medical Genetics, Part A, 2015, 167, 282-286.	1.2	3
42	A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nature Genetics, 2015, 47, 387-392.	21.4	97
43	Identification of unsuspected Wolfram syndrome cases through clinical assessment and WFS1 gene screening in type 1 diabetes mellitus patients. Gene, 2015, 566, 63-67.	2.2	16
44	Submicroscopic Deletions at 13q32.1 Cause Congenital Microcoria. American Journal of Human Genetics, 2015, 96, 631-639.	6.2	13
45	Next generation sequencing uncovers a missense mutation in COL4A1 as the cause of familial retinal arteriolar tortuosity. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014, 252, 1789-1794.	1.9	33
46	Mutational Screening of <i>FOXE3, GDF3, ATOH7</i> , and <i>ALDH1A3</i> in Congenital Ocular Malformations. Possible Contribution of the FOXE3 p.VAL201MET Variant to the Risk of Severe Eye Malformations. Ophthalmic Genetics, 2014, 35, 190-192.	1.2	14
47	Clinical and Genetic Characteristics of Mexican Patients with Juvenile Presentation of Niemann-Pick Type C Disease. Case Reports in Neurological Medicine, 2014, 2014, 1-7.	0.4	6
48	Polymorphism analysis and new JAG1 gene mutations of Alagille syndrome in Mexican population. Meta Gene, 2014, 2, 32-40.	0.6	7
49	Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Human Genetics, 2014, 133, 331-345.	3.8	204
50	TGFBI, CHST6, and GSN gene analysis in Mexican patients with stromal corneal dystrophies. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014, 252, 1267-1272.	1.9	13
51	Homozygosity mapping identifies a GALK1 mutation as the cause of autosomal recessive congenital cataracts in 4 adult siblings. Gene, 2014, 534, 218-221.	2.2	5
52	Identification and expression analysis of a novel intragenic EFNB1 mutation causing craniofrontonasal syndrome. Meta Gene, 2014, 2, 25-31.	0.6	5
53	CFH haplotypes and ARMS2, C2, C3, and CFB alleles show association with susceptibility to age-related macular degeneration in Mexicans. Molecular Vision, 2014, 20, 105-16.	1.1	15
54	Molecular and clinical analysis in a series of patients with Pyknodysostosis reveals some uncommon phenotypic findings. International Journal of Clinical and Experimental Medicine, 2014, 7, 3915-23.	1.3	9

JUAN CARLOS ZENTENO

#	Article	IF	CITATIONS
55	Exome sequencing identifies RDH12 compound heterozygous mutations in a family with severe retinitis pigmentosa. Gene, 2013, 528, 178-182.	2.2	13
56	Association study of multiple gene polymorphisms with the risk of adult-onset primary open-angle glaucoma in a Mexican population. Experimental Eye Research, 2013, 107, 59-64.	2.6	18
57	Rhodopsin p.N78I dominant mutation causing sectorial retinitis pigmentosa in a pedigree with intrafamilial clinical heterogeneity. Gene, 2013, 519, 173-176.	2.2	13
58	Nasopalpebral Lipoma oloboma syndrome: Clinical, radiological, and histopathological description of a novel sporadic case. American Journal of Medical Genetics, Part A, 2013, 161, 1470-1474.	1.2	11
59	Expansion of the Clinical Ocular Spectrum of Wolfram Syndrome in a Family Carrying a Novel <i>WFS1</i> Gene Deletion. Ophthalmic Genetics, 2013, 34, 243-248.	1.2	7
60	An epidemiological investigation of a Forkhead box protein E3 founder mutation underlying the high frequency of sclerocornea, aphakia, and microphthalmia in a Mexican village. Molecular Vision, 2013, 19, 1866-70.	1.1	7
61	The T allele of lysyl oxidase-like 1 rs41435250 is a novel risk factor for pseudoexfoliation syndrome and pseudoexfoliation glaucoma independently and through intragenic epistatic interaction. Molecular Vision, 2013, 19, 1937-44.	1.1	8
62	Gene Therapy for Retinitis Pigmentosa Caused by <i>MFRP</i> Mutations: Human Phenotype and Preliminary Proof of Concept. Human Gene Therapy, 2012, 23, 367-376.	2.7	35
63	Prevalence of high-risk alleles in the <i>LOXL1</i> gene and its association with pseudoexfoliation syndrome and exfoliation glaucoma in a Latin American population. Ophthalmic Genetics, 2012, 33, 12-17.	1.2	31
64	An intellectually disabled patient with the 5q14.3q15 microdeletion syndrome associated with an apparently de novo t(2;5)(q13;q14). American Journal of Medical Genetics, Part A, 2012, 158A, 942-946.	1.2	7
65	Membrane frizzled-related protein gene-related ophthalmological syndrome: 30-month follow-up of a sporadic case and review of genotype-phenotype correlation in the literature. Molecular Vision, 2012, 18, 2623-32.	1.1	12
66	Homozygosity mapping identifies the Crumbs homologue 1 (<i>Crb1</i>) gene as responsible for a recessive syndrome of retinitis pigmentosa and nanophthalmos. American Journal of Medical Genetics, Part A, 2011, 155, 1001-1006.	1.2	38
67	Expanding the phenotype of gingival fibromatosis–mental retardation–hypertrichosis (Zimmermann–Laband) syndrome. American Journal of Medical Genetics, Part A, 2011, 155, 1716-1720.	1.2	19
68	OCT findings in young asymptomatic subjects carrying familialBEST1gene mutations. Ophthalmic Genetics, 2011, 32, 24-30.	1.2	8
69	Mutations in a novel serine protease PRSS56 in families with nanophthalmos. Molecular Vision, 2011, 17, 1850-61.	1.1	43
70	Clinical and molecular features of familial and sporadic cases of von Hippel‣indau disease from Mexico. Clinical and Experimental Ophthalmology, 2010, 38, 277-283.	2.6	5
71	Novel and recurrent <i>NDP</i> gene mutations in familial cases of Norrie disease and Xâ€ŀinked exudative vitreoretinopathy. Clinical and Experimental Ophthalmology, 2010, 38, 367-374.	2.6	17
72	Homozygous FOXE3 mutations cause non-syndromic, bilateral, total sclerocornea, aphakia, microphthalmia and optic disc coloboma. Molecular Vision, 2010, 16, 1162-8.	1.1	33

#	Article	IF	CITATIONS
73	<i>CHM</i> gene molecular analysis and Xâ€chromosome inactivation pattern determination in two families with choroideremia. American Journal of Medical Genetics, Part A, 2009, 149A, 2134-2140.	1.2	32
74	Clinical and genetic features of TGFBI-linked corneal dystrophies in Mexican population: Description of novel mutations and novel genotype–phenotype correlations. Experimental Eye Research, 2009, 89, 172-177.	2.6	30
75	Molecular Screening ofRhodopsinandPeripherin/RDSGenes in Mexican Families with Autosomal Dominant Retinitis Pigmentosa. Current Eye Research, 2009, 34, 1050-1056.	1.5	15
76	Compound heterozygosity for a novel and a recurrent MFRP gene mutation in a family with the nanophthalmos-retinitis pigmentosa complex. Molecular Vision, 2009, 15, 1794-8.	1.1	38
77	A Novel Mutation Confirms MFRP as the Gene Causing the Syndrome of Nanophthalmos–Renititis Pigmentosa–Foveoschisis–Optic Disk Drusen. American Journal of Ophthalmology, 2008, 146, 323-328.e1.	3.3	86
78	Novel CYP4V2 Gene Mutation in a Mexican Patient with Bietti's Crystalline Corneoretinal Dystrophy. Current Eye Research, 2008, 33, 313-318.	1.5	23
79	Contribution of CYP1B1 Mutations and Founder Effect to Primary Congenital Glaucoma in Mexico. Journal of Glaucoma, 2008, 17, 189-192.	1.6	20
80	Familial Wolfram syndrome due to compound heterozygosity for two novel WFS1 mutations. Molecular Vision, 2008, 14, 1353-7.	1.1	10
81	The TGFBI A546D mutation causes an atypical type of lattice corneal dystrophy. Molecular Vision, 2007, 13, 1695-700.	1.1	12
82	Anophthalmia-esophageal atresia syndrome caused by anSOX2 gene deletion in monozygotic twin brothers with markedly discordant phenotypes. American Journal of Medical Genetics, Part A, 2006, 140A, 1899-1903.	1.2	40
83	PAX6 gene intragenic deletions in Mexican patients with congenital aniridia. Molecular Vision, 2006, 12, 318-23.	1.1	7
84	Expanding the mutational spectrum in TGFBI-linked corneal dystrophies: Identification of a novel and unusual mutation (Val113IIe) in a family with granular dystrophy. Molecular Vision, 2006, 12, 331-5.	1.1	19
85	A new autosomal recessive syndrome consisting of posterior microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen is caused by a MFRP gene mutation. Molecular Vision, 2006, 12, 1483-9.	1.1	80
86	Phenotypic Heterogeneity Associated with Identical Mutations in Residue 870 of the Androgen Receptor. Hormone Research in Paediatrics, 2002, 57, 90-93.	1.8	18
87	Clinical expression and SRY gene analysis in XY subjects lacking gonadal tissue. American Journal of Medical Genetics Part A, 2001, 99, 244-247.	2.4	13
88	Partially deleted SRY gene confined to testicular tissue in a 46,XX true hermaphrodite without SRY in leukocytic DNA. American Journal of Medical Genetics Part A, 2000, 93, 417-420.	2.4	31
89	Partially deleted SRY gene confined to testicular tissue in a 46,XX true hermaphrodite without SRY in leukocytic DNA. American Journal of Medical Genetics Part A, 2000, 93, 417-420.	2.4	2
90	An atypical contiguous gene syndrome: molecular studies in a family with X-linked Kallmann's syndrome and X-linked ichthyosis. Clinical Endocrinology, 1999, 50, 157-162.	2.4	22

#	Article	IF	CITATIONS
91	Contiguous gene syndrome due to deletion of the first three exons of the Kallmann gene and complete deletion of the steroid sulphatase gene. Clinical Endocrinology, 1998, 48, 713-718.	2.4	41
92	Two SRY -negative XX male brothers without genital ambiguity. Human Genetics, 1997, 100, 606-610.	3.8	56