Timothy J Doran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7044967/publications.pdf Version: 2024-02-01

ΤΙΜΟΤΗΥΙΟΟΡΛΝ

#	Article	IF	CITATIONS
1	The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature, 2009, 461, 267-271.	13.7	728
2	Sexually Dimorphic MicroRNA Expression During Chicken Embryonic Gonadal Development1. Biology of Reproduction, 2009, 81, 165-176.	1.2	92
3	A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells. Transgenic Research, 2013, 22, 1257-1264.	1.3	78
4	Immune responses to dsRNA: Implications for gene silencing technologies. Immunology and Cell Biology, 2005, 83, 211-216.	1.0	75
5	Overexpression of Aromatase Alone is Sufficient for Ovarian Development in Genetically Male Chicken Embryos. PLoS ONE, 2013, 8, e68362.	1.1	73
6	T-cell determinants and antibody binding sites on the major mycobacterial secretory protein MPB59 of Mycobacterium bovis. Infection and Immunity, 1994, 62, 5319-5326.	1.0	66
7	Manipulation of Estrogen Synthesis Alters MIR202* Expression in Embryonic Chicken Gonads1. Biology of Reproduction, 2011, 85, 22-30.	1.2	61
8	Cracking the egg: An insight into egg hypersensitivity. Molecular Immunology, 2015, 66, 375-383.	1.0	51
9	Precision genetics for complex objectives in animal agriculture. Journal of Animal Science, 2010, 88, 2530-2539.	0.2	48
10	Genetic characterization of three unique operational taxonomic units of Eimeria from chickens in Australia based on nuclear spacer ribosomal DNA. Veterinary Parasitology, 2008, 152, 226-234.	0.7	47
11	Transgenic Chickens Overexpressing Aromatase Have High Estrogen Levels but Maintain a Predominantly Male Phenotype. Endocrinology, 2016, 157, 83-90.	1.4	44
12	The potential role of microRNAs in regulating gonadal sex differentiation in the chicken embryo. Chromosome Research, 2012, 20, 201-213.	1.0	43
13	Characterization and Comparison of Chicken U6 Promoters for the Expression of Short Hairpin RNAs. Animal Biotechnology, 2007, 18, 153-162.	0.7	40
14	A low G+C content genetic island in Mycobacterium avium subsp. paratuberculosis and M. avium subsp. silvaticum with homologous genes in Mycobacterium tuberculosis. Microbiology (United Kingdom), 1998, 144, 3413-3423.	0.7	39
15	Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE). Transgenic Research, 2017, 26, 331-347.	1.3	39
16	Inhibition of Henipavirus infection by RNA interference. Antiviral Research, 2008, 80, 324-331.	1.9	35
17	Suppression of bovine viral diarrhea virus replication by small interfering RNA and short hairpin RNA-mediated RNA interference. Veterinary Microbiology, 2007, 119, 132-143.	0.8	29
18	Anti-Müllerian Hormone Is Required for Chicken Embryonic Urogenital System Growth but Not Sexual Differentiation 1. Biology of Reproduction, 2015, 93, 138.	1.2	29

TIMOTHY J DORAN

#	Article	IF	CITATIONS
19	Advances in genetic engineering of the avian genome: "Realising the promise― Transgenic Research, 2016, 25, 307-319.	1.3	29
20	Identification, Expression, and Regulation of Anti-Müllerian Hormone Type-II Receptor in the Embryonic Chicken Gonad1. Biology of Reproduction, 2014, 90, 106.	1.2	28
21	Overexpression of Anti-MÃ1⁄4llerian Hormone Disrupts Gonadal Sex Differentiation, Blocks Sex Hormone Synthesis, and Supports Cell Autonomous Sex Development in the Chicken. Endocrinology, 2016, 157, 1258-1275.	1.4	28
22	The oncogene <i>Trop2</i> regulates fetal lung cell proliferation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L478-L489.	1.3	27
23	Characterisation and application of a bovine U6 promoter for expression of short hairpin RNAs. BMC Biotechnology, 2005, 5, 13.	1.7	26
24	Molecular and immunological analysis of hen's egg yolk allergens with a focus on YGP42 (Gal d 6). Molecular Immunology, 2016, 71, 152-160.	1.0	26
25	Comparison of chicken 7SK and U6 RNA polymerase III promoters for short hairpin RNA expression. BMC Biotechnology, 2007, 7, 79.	1.7	25
26	Comparison of bovine RNA polymerase III promoters for short hairpin RNA expression. Animal Genetics, 2006, 37, 369-372.	0.6	24
27	Molecular analysis of the F plasmid traVR region: traV encodes a lipoprotein. Journal of Bacteriology, 1994, 176, 4182-4186.	1.0	23
28	Innovative approaches to genome editing in avian species. Journal of Animal Science and Biotechnology, 2018, 9, 15.	2.1	23
29	Gonadal and Endocrine Analysis of a Gynandromorphic Chicken. Endocrinology, 2018, 159, 3492-3502.	1.4	22
30	IS900 targets translation initiation signals in Mycobacterium avium subsp. paratuberculosis to facilitate expression of its hed gene. Microbiology (United Kingdom), 1997, 143, 547-552.	0.7	21
31	Measles virus and Crohn's disease. Lancet, The, 1995, 345, 922-923.	6.3	20
32	Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security. Transgenic Research, 2016, 25, 575-595.	1.3	20
33	In Vivo Inhibition of Marek's Disease Virus in Transgenic Chickens Expressing Cas9 and gRNA against ICP4. Microorganisms, 2021, 9, 164.	1.6	20
34	Improved vectors for expression library immunization $\hat{a} \in$ application to Mycoplasma hyopneumoniae infection in pigs. Vaccine, 2001, 20, 115-120.	1.7	19
35	Hypoallergenic Variant of the Major Egg White Allergen Gal d 1 Produced by Disruption of Cysteine Bridges. Nutrients, 2017, 9, 171.	1.7	18
36	Characterisation of a novel repetitive DNA sequence fromMycobacterium bovis. FEMS Microbiology Letters, 1992, 96, 179-185.	0.7	17

TIMOTHY J DORAN

#	Article	IF	CITATIONS
37	Putative functional domain within ORF2 on the <i>Mycobacterium</i> insertion sequences IS <i>900</i> and IS <i>902</i> . Immunology and Cell Biology, 1994, 72, 427-434.	1.0	17
38	Development and application of polymerase chain reaction-based assays for Rathayibacter toxicus and a bacteriophage associated with annual ryegrass (Lolium rigidum) toxicity. Australian Journal of Experimental Agriculture, 2007, 47, 177.	1.0	17
39	Inhibition of chicken anaemia virus replication using multiple short-hairpin RNAs. Antiviral Research, 2008, 80, 143-149.	1.9	17
40	Creating Disease Resistant Chickens: A Viable Solution to Avian Influenza?. Viruses, 2018, 10, 561.	1.5	17
41	Sex selection in layer chickens. Animal Production Science, 2018, 58, 476.	0.6	16
42	Potential benefits of gene editing for the future of poultry farming. Transgenic Research, 2019, 28, 87-92.	1.3	16
43	Production and immunological analysis of IgE reactive recombinant egg white allergens expressed in Escherichia coli. Molecular Immunology, 2015, 65, 104-112.	1.0	15
44	Germline engineering of the chicken genome using CRISPR/Cas9 by <i>inÂvivo</i> transfection of PGCs. Animal Biotechnology, 2023, 34, 775-784.	0.7	15
45	Transgenesis and web resources in quail. ELife, 2020, 9, .	2.8	15
46	The application of molecular techniques to the diagnosis and epidemiology of mycobacterial diseases. Journal of Applied Bacteriology, 1996, 81, 53S.	1.1	13
47	Trop2 regulates motility and lamellipodia formation in cultured fetal lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L508-L521.	1.3	13
48	Characterization of Zebrafish Polymerase III Promoters for the Expression of Short-Hairpin RNA Interference Molecules. Zebrafish, 2013, 10, 472-479.	0.5	12
49	Overexpressing ovotransferrin and avian β-defensin-3 improves antimicrobial capacity of chickens and poultry products. Transgenic Research, 2019, 28, 51-76.	1.3	12
50	Role of genetically engineered animals in future food production. Australian Veterinary Journal, 2013, 91, 113-117.	0.5	11
51	RNA interference-based technology: what role in animal agriculture?. Animal Production Science, 2017, 57, 1.	0.6	11
52	Potent Inhibition of Hendra Virus Infection via RNA Interference and Poly I:C Immune Activation. PLoS ONE, 2013, 8, e64360.	1.1	10
53	Immunological Comparison of Native and Recombinant Hen's Egg Yolk Allergen, Chicken Serum Albumin (Gal d 5), Produced in Kluveromyces lactis. Nutrients, 2018, 10, 757.	1.7	10
54	shRNAs targeting either the glycoprotein or polymerase genes inhibit Viral haemorrhagic septicaemia virus replication in zebrafish ZF4 cells. Antiviral Research, 2017, 141, 124-132.	1.9	8

TIMOTHY J DORAN

#	ARTICLE	IF	CITATIONS
55	Chicken functional genomics: an overview. Australian Journal of Experimental Agriculture, 2005, 45, 749.	1.0	6
56	Characterisation and comparison of the chicken H1 RNA polymerase III promoter for short hairpin RNA expression. Biochemical and Biophysical Research Communications, 2011, 416, 194-198.	1.0	5
57	In Vitro Inhibition of Influenza Virus Using CRISPR/Cas13a in Chicken Cells. Methods and Protocols, 2021, 4, 40.	0.9	5
58	Identification and characterisation of the porcine 7SK RNA polymerase III promoter for short hairpin RNA expression. Journal of Rnai and Gene Silencing, 2008, 4, 289-94.	1.2	3
59	Manipulation of small RNAs to modify the chicken transcriptome and enhance productivity traits. Cytogenetic and Genome Research, 2007, 117, 158-164.	0.6	2
60	Marker counter-selection via CRISPR/Cas9 co-targeting for efficient generation of genome edited avian cell lines and germ cells. Animal Biotechnology, 2022, 33, 1235-1245.	0.7	2
61	Harnessing Intronic microRNA Structures to Improve Tolerance and Expression of shRNAs in Animal Cells. Methods and Protocols, 2022, 5, 18.	0.9	1
62	Hypoallergenic Variant of the Major Egg White Allergen Gal d 1 Produced By Disruption of Cysteine Bridges. Journal of Allergy and Clinical Immunology, 2015, 135, AB387.	1.5	0
63	Dose-related, differential gene expression in cultured rat hepatocytes exposed to tunicamycins: a model for annual ryegrass toxicity , 2007, , 253-258.		0
64	A study of the bioequivalence of corynetoxins and tunicamycins: the effect of these toxins on the viability and morphology of rat hepatocytes in tissue culture , 2007, , 504-510.		0
65	Hairpin RNAi in plants , 2008, , 1-25.		0

66 The use of artificial microRNAs in targeted gene silencing.. , 2008, , 50-84.