Emmanuel Baudouin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7044954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological and Environmental Regulation of Seed Germination: From Signaling Events to Molecular Responses. International Journal of Molecular Sciences, 2022, 23, 4839.	4.1	0
2	Total Synthesis of Phytotoxic Radulanin A Facilitated by the Photochemical Ring Expansion of a 2,2-Dimethylchromene in Flow. Organic Letters, 2022, 24, 4029-4033.	4.6	8
3	Dynamics of Protein Phosphorylation during Arabidopsis Seed Germination. International Journal of Molecular Sciences, 2022, 23, 7059.	4.1	1
4	Hydrogen Sulfide Impact on Seed Biology Under Abiotic Stress. Plant in Challenging Environments, 2021, , 123-137.	0.4	0
5	Molecular crosstalk between the endophyte Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum – Modulation of lipoxygenase activity and beauvericin production during the interaction. Fungal Genetics and Biology, 2020, 139, 103383.	2.1	16
6	The <scp>MPK</scp> 8â€ <scp>TCP</scp> 14 pathway promotes seed germination in Arabidopsis. Plant Journal, 2019, 100, 677-692.	5.7	29
7	Highly oxygenated isoprenylated cyclohexanoids from the fungus Parastagonospora nodorum SN15. Phytochemistry, 2019, 166, 112056.	2.9	7
8	Oneâ€Pot Synthesis of Metastable 2,5â€Dihydrooxepines through Retroâ€Claisen Rearrangements: Method and Applications. Chemistry - A European Journal, 2019, 25, 8643-8648.	3.3	16
9	The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination. Frontiers in Plant Science, 2016, 7, 930.	3.6	58
10	Evidence for <scp>ACD</scp> 5 ceramide kinase activity involvement in <scp><i>AC/i></i></scp> <i>rabidopsis</i> response to cold stress. Plant, Cell and Environment, 2015, 38, 2688-2697.	5.7	18
11	Nitric Oxide as a Mediator of Cold Stress Response: A Transcriptional Point of View. , 2015, , 129-139.		9
12	Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant, Cell and Environment, 2015, 38, 364-374.	5.7	125
13	Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: Effect of cold stress on cysteine nitrosylation level. Plant Science, 2014, 215-216, 150-156.	3.6	121
14	New clues for a cold case: nitric oxide response to low temperature. Plant, Cell and Environment, 2014, 37, 2623-2630.	5.7	82
15	Long chain base changes triggered by a short exposure of Arabidopsis to low temperature are altered by AHb1 non-symbiotic haemoglobin overexpression. Plant Physiology and Biochemistry, 2013, 63, 191-195.	5.8	26
16	Nitric oxide-sphingolipid interplays in plant signalling: a new enigma from the Sphinx?. Frontiers in Plant Science, 2013, 4, 341.	3.6	13
17	Nitric oxide signaling in plants. Frontiers in Plant Science, 2013, 4, 553.	3.6	66
18	Phytosphingosineâ€phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling. New Phytologist, 2012, 194, 181-191.	7.3	82

Emmanuel Baudouin

#	Article	lF	CITATIONS
19	The language of nitric oxide signalling. Plant Biology, 2011, 13, 233-242.	3.8	151
20	Nitric oxide participates in coldâ€responsive phosphosphingolipid formation and gene expression in <i>Arabidopsis thaliana</i> . New Phytologist, 2011, 189, 415-427.	7.3	216
21	MtNOA1/RIF1 modulates Medicago truncatula–Sinorhizobium meliloti nodule development without affecting its nitric oxide content. Journal of Experimental Botany, 2011, 62, 939-948.	4.8	17
22	A matter of fat. Plant Signaling and Behavior, 2011, 6, 140-142.	2.4	19
23	Expression of <i>Medicago truncatula</i> Genes Responsive to Nitric Oxide in Pathogenic and Symbiotic Conditions. Molecular Plant-Microbe Interactions, 2008, 21, 781-790.	2.6	89
24	Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta, 2007, 225, 1597-1602.	3.2	138
25	Nitric Oxide in Nitrogen-Fixing Symbiosis. Plant Cell Monographs, 2006, , 173-186.	0.4	1
26	Reactive oxygen and nitrogen species and glutathione: key players in the legume-Rhizobium symbiosis. Journal of Experimental Botany, 2006, 57, 1769-1776.	4.8	189
27	Nitric Oxide Is Formed in Medicago truncatula-Sinorhizobium meliloti Functional Nodules. Molecular Plant-Microbe Interactions, 2006, 19, 970-975.	2.6	148
28	Plant-induced cell death in the oomycete pathogen Phytophthora parasitica. Cellular Microbiology, 2005, 7, 1365-1378.	2.1	25
29	A Medicago sativa haem oxygenase gene is preferentially expressed in root nodules. Journal of Experimental Botany, 2003, 55, 43-47.	4.8	44
30	Stress-induced Protein Phosphatase 2C Is a Negative Regulator of a Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 2003, 278, 18945-18952.	3.4	147
31	Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume–Rhizobium symbiosis?. Plant Physiology and Biochemistry, 2002, 40, 619-624.	5.8	100
32	SIMKK, a Mitogen-Activated Protein Kinase (MAPK) Kinase, Is a Specific Activator of the Salt Stress–Induced MAPK, SIMK. Plant Cell, 2000, 12, 2247-2258.	6.6	187
33	Unsaturated fatty acids inhibit MP2C, a protein phosphatase 2C involved in the wound-induced MAP kinase pathway regulation. Plant Journal, 1999, 20, 343-348.	5.7	45
34	Involvement of active oxygen species in the regulation of a tobacco defence gene by phorbol ester. Plant Science, 1999, 142, 67-72.	3.6	9
35	Functional Expression of a Tobacco Gene Related to the Serine Hydrolase Family. Esterase Activity Towards Short-Chain Dinitrophenyl Acylesters. FEBS Journal, 1997, 248, 700-706.	0.2	48