Amina S Woods

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7044886/publications.pdf

Version: 2024-02-01

		22153	31849
158	10,998	59	101
papers	citations	h-index	g-index
160	160	160	9835
all docs	docs citations	times ranked	citing authors
3.22 3.0 00	3.5 5.5 5. 7000 5.75		

#	Article	IF	CITATIONS
1	Lipid A Structural Determination from a Single Colony. Analytical Chemistry, 2022, 94, 7460-7465.	6.5	9
2	First Direct Evidence of Interpartner Hydride/Deuteride Exchanges for Stored Sodiated Arginine/Fructose-6-phosphate Complex Anions within Salt-Solvated Structures. Journal of the American Society for Mass Spectrometry, 2021, 32, 1424-1440.	2.8	4
3	Combining Chemical Knowledge and Quantum Calculation for Interpreting Low-Energy Product Ion Spectra of Metabolite Adduct Ions: Sodiated Diterpene Diester Species as a Case Study. Journal of the American Society for Mass Spectrometry, 2021, 32, 2499-2504.	2.8	4
4	Streamlined Analysis of Cardiolipins in Prokaryotic and Eukaryotic Samples Using a Norharmane Matrix by MALDI-MSI. Journal of the American Society for Mass Spectrometry, 2020, 31, 2495-2502.	2.8	14
5	On-Tissue Derivatization of Lipopolysaccharide for Detection of Lipid A Using MALDI-MSI. Analytical Chemistry, 2020, 92, 13667-13671.	6.5	15
6	A New Integrative Theory of Brain-Body-Ecosystem Medicine: From the Hippocratic Holistic View of Medicine to Our Modern Society. International Journal of Environmental Research and Public Health, 2019, 16, 3136.	2.6	6
7	Histidine, the less interactive cousin of arginine. European Journal of Mass Spectrometry, 2019, 25, 212-218.	1.0	4
8	An In Vitro Study of Aromatic Stacking of Drug Molecules. Journal of the American Society for Mass Spectrometry, 2019, 30, 1199-1203.	2.8	6
9	Cocaine-induced endocannabinoid signaling mediated by sigma-1 receptors and extracellular vesicle secretion. ELife, $2019,8,.$	6.0	36
10	The brain as a "hyper-network― the key role of neural networks as main producers of the integrated brain actions especially via the "broadcasted―neuroconnectomics. Journal of Neural Transmission, 2018, 125, 883-897.	2.8	14
11	AP-MALDI Mass Spectrometry Imaging of Gangliosides Using 2,6-Dihydroxyacetophenone. Journal of the American Society for Mass Spectrometry, 2018, 29, 1463-1472.	2.8	46
12	Macrophages Shed Excess Cholesterol in Unique Extracellular Structures Containing Cholesterol Microdomains. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1504-1518.	2.4	21
13	A Mouse Model of Schnyder Corneal Dystrophy with the N100S Point Mutation. Scientific Reports, 2018, 8, 10219.	3.3	7
14	Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. Journal of Lipid Research, 2018, 59, 1586-1596.	4.2	56
15	Cocaine Regulates Endocannabinoids-Containing Extracellular Vesicles Release in Ventral Tegmental Area via Sigma-1 Receptor and ADP-Ribosylation Factor 6 Pathway. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-79.	0.0	O
16	Laser Desorption/Ionization Mass Spectrometric Imaging of Endogenous Lipids from Rat Brain Tissue Implanted with Silver Nanoparticles. Journal of the American Society for Mass Spectrometry, 2017, 28, 1716-1728.	2.8	41
17	Novel Bivalent Ligands Based on the Sumanirole Pharmacophore Reveal Dopamine D ₂ Receptor (D ₂ R) Biased Agonism. Journal of Medicinal Chemistry, 2017, 60, 2890-2907.	6.4	43
18	Mass Spectrometric Imaging of Ceramide Biomarkers Tracks Therapeutic Response in Traumatic Brain Injury. ACS Chemical Neuroscience, 2017, 8, 2266-2274.	3.5	30

#	Article	IF	CITATIONS
19	A2Aâ€D2 receptor–receptor interaction modulates gliotransmitter release from striatal astrocyte processes. Journal of Neurochemistry, 2017, 140, 268-279.	3.9	60
20	The Authors Reply. Kidney International, 2016, 90, 1130-1131.	5.2	0
21	Ethanol Induced Brain Lipid Changes in Mice Assessed by Mass Spectrometry. ACS Chemical Neuroscience, 2016, 7, 1148-1156.	3.5	6
22	Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. Journal of Neuroscience Methods, 2016, 272, 19-32.	2.5	84
23	The Development of Matrix-Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry., 2016,, 124-131.		2
24	Chronic Ethanol Consumption Profoundly Alters Regional Brain Ceramide and Sphingomyelin Content in Rodents. ACS Chemical Neuroscience, 2015, 6, 247-259.	3.5	31
25	Lipid imaging within the normal rat kidney using silver nanoparticles by matrix-assisted laser desorption/ionization mass spectrometry. Kidney International, 2015, 88, 186-192.	5.2	64
26	Imaging of lipids in rat heart by MALDI-MS with silver nanoparticles. Analytical and Bioanalytical Chemistry, 2014, 406, 1377-1386.	3.7	88
27	ETD and sequential ETD localize the residues involved in D2-A2A heteromerization. RSC Advances, 2014, 4, 42272-42277.	3.6	6
28	MALDI-ion mobility mass spectrometry of lipids in negative ion mode. Analytical Methods, 2014, 6, 5001-5007.	2.7	46
29	Monitoring dynamic changes in lymph metabolome of fasting and fed rats by matrix-assisted laser desorption/ionization-ion mobility mass spectrometry (MALDI-IMMS). International Journal for Ion Mobility Spectrometry, 2013, 16, 177-184.	1.4	5
30	Imaging of Noncovalent Complexes by MALDI-MS. Journal of the American Society for Mass Spectrometry, 2013, 24, 1950-1956.	2.8	6
31	Gangliosides and Ceramides Change in a Mouse Model of Blast Induced Traumatic Brain Injury. ACS Chemical Neuroscience, 2013, 4, 594-600.	3.5	69
32	MALDI/Post Ionization-Ion Mobility Mass Spectrometry of Noncovalent Complexes of Dopamine Receptors' Epitopes. Journal of Proteome Research, 2013, 12, 1668-1677.	3.7	9
33	Rapid Sensitization of Physiological, Neuronal, and Locomotor Effects of Nicotine: Critical Role of Peripheral Drug Actions. Journal of Neuroscience, 2013, 33, 9937-9949.	3.6	25
34	Cellular Membrane Phospholipids Act as a Depository for Quaternary Amine Containing Drugs thus Competing with the Acetylcholine/Nicotinic Receptor. Journal of Proteome Research, 2012, 11, 3382-3389.	3.7	3
35	Cell Growth on Different Types of Ultrananocrystalline Diamond Thin Films. Journal of Functional Biomaterials, 2012, 3, 588-600.	4.4	19
36	Highlighting anatomical sub-structures in rat brain tissue using lipid imaging. Analytical Methods, 2011, 3, 1729.	2.7	23

#	Article	IF	CITATIONS
37	Competition between covalent and noncovalent bond cleavages in dissociation of phosphopeptide-amine complexes. Physical Chemistry Chemical Physics, 2011, 13, 6936.	2.8	14
38	Analysis of Native Biological Surfaces Using a 100 kV Massive Gold Cluster Source. Analytical Chemistry, 2011, 83, 8448-8453.	6.5	27
39	Gangliosides' analysis by MALDI-ion mobility MS. Analyst, The, 2011, 136, 463-466.	3.5	51
40	Molecular Microscopy of Brain Gangliosides: Illustrating their Distribution in Hippocampal Cell Layers. ACS Chemical Neuroscience, 2011, 2, 213-222.	3.5	66
41	Dopamine D2 and D4 receptor heteromerization and its allosteric receptor–receptor interactions. Biochemical and Biophysical Research Communications, 2011, 404, 928-934.	2.1	88
42	Optimization of automated matrix deposition for biomolecular mapping using a spotter. Journal of Mass Spectrometry, 2011, 46, 1046-1050.	1.6	9
43	Matrix Assisted Laser Desorption Ionization Ion Mobility Time-of-Flight Mass Spectrometry of Bacteria. ACS Symposium Series, 2011, , 143-160.	0.5	3
44	Sample Preparation in Biological Analysis by Atmospheric Pressure Matrix Assisted Laser/Desorption Ionization (AP-MALDI) Mass Spectrometry., 2011,, 749-764.		1
45	Metabolic profiling of <i>Escherichia coli</i> by ion mobilityâ€mass spectrometry with MALDI ion source. Journal of Mass Spectrometry, 2010, 45, 1383-1393.	1.6	43
46	The dopamine D ₄ receptor, the ultimate disordered protein. Journal of Receptor and Signal Transduction Research, 2010, 30, 331-336.	2.5	26
47	Interactions between Intracellular Domains as Key Determinants of the Quaternary Structure and Function of Receptor Heteromers. Journal of Biological Chemistry, 2010, 285, 27346-27359.	3.4	102
48	Localization and imaging of sialylated glycosphingolipids in brain tissue sections by MALDI mass spectrometry. Glycobiology, 2010, 20, 661-667.	2.5	86
49	Simultaneous Imaging of Small Metabolites and Lipids in Rat Brain Tissues at Atmospheric Pressure by Laser Ablation Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2010, 82, 982-988.	6.5	198
50	Calcium-mediated modulation of the quaternary structure and function of adenosine A2A–dopamine D2 receptor heteromers. Current Opinion in Pharmacology, 2010, 10, 67-72.	3.5	25
51	The Application and Potential of Ion Mobility Mass Spectrometry in Imaging MS with a Focus on Lipids. Methods in Molecular Biology, 2010, 656, 99-111.	0.9	24
52	Dopamine Receptor Oligomerization. , 2010, , 255-280.		2
53	Ion Mobility MALDI Mass Spectrometry and Its Applications. , 2010, , 257-267.		0
54	Astaxanthin reduces ischemic brain injury in adult rats. FASEB Journal, 2009, 23, 1958-1968.	0.5	119

#	Article	IF	Citations
55	Interactions between Calmodulin, Adenosine A2A, and Dopamine D2 Receptors. Journal of Biological Chemistry, 2009, 284, 28058-28068.	3.4	65
56	Dopamine D2 and Adenosine A2A Receptors Regulate NMDA-Mediated Excitation in Accumbens Neurons Through A2A–D2 Receptor Heteromerization. Neuropsychopharmacology, 2009, 34, 972-986.	5.4	174
57	Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. Journal of Neural Transmission, 2009, 116, 923-939.	2.8	42
58	The use of ECD/ETD to identify the site of electrostatic interaction in noncovalent complexes. Journal of the American Society for Mass Spectrometry, 2009, 20, 176-179.	2.8	36
59	Building a new conceptual framework for receptor heteromers. Nature Chemical Biology, 2009, 5, 131-134.	8.0	349
60	Direct profiling of tissue lipids by MALDI-TOFMS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2822-2829.	2.3	87
61	Ammonium Sulfate and MALDI In-Source Decay: A Winning Combination for Sequencing Peptides. Analytical Chemistry, 2009, 81, 9585-9589.	6.5	10
62	Brain Receptor Mosaics and Their Intramembrane Receptor-Receptor Interactions: Molecular Integration in Transmission and Novel Targets for Drug Development. JAMS Journal of Acupuncture and Meridian Studies, 2009, 2, 1-25.	0.7	19
63	Theoretical Considerations on the Topological Organization of Receptor Mosaics. Current Protein and Peptide Science, 2009, 10, 559-569.	1.4	17
64	The role of phosphorylated residues in peptide-peptide noncovalent complexes formation. Journal of the American Society for Mass Spectrometry, 2008, 19, 1535-1541.	2.8	20
65	A study of phospholipids by ion mobility TOFMS. Journal of the American Society for Mass Spectrometry, 2008, 19, 1655-1662.	2.8	105
66	A minimalist approach to MALDI imaging of glycerophospholipids and sphingolipids in rat brain sections. International Journal of Mass Spectrometry, 2008, 278, 143-149.	1.5	70
67	Influence of salt bridge interactions on the gas-phase stability of DNA/peptide complexes. International Journal of Mass Spectrometry, 2008, 278, 122-128.	1.5	21
68	Amazing Stability of Phosphate-Quaternary Amine Interactions. Journal of Proteome Research, 2008, 7, 3423-3427.	3.7	36
69	How Calmodulin Interacts with the Adenosine A _{2A} and the Dopamine D ₂ Receptors. Journal of Proteome Research, 2008, 7, 3428-3434.	3.7	42
70	Heterodimers and Receptor Mosaics of Different Types of G-Protein-Coupled Receptors. Physiology, 2008, 23, 322-332.	3.1	43
71	Heteromeric Nicotinic Acetylcholine–Dopamine Autoreceptor Complexes Modulate Striatal Dopamine Release. Neuropsychopharmacology, 2007, 32, 35-42.	5.4	63
72	A Snapshot of Tissue Glycerolipids. Current Pharmaceutical Design, 2007, 13, 3344-3356.	1.9	13

#	Article	IF	Citations
73	Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends in Neurosciences, 2007, 30, 440-446.	8.6	136
74	A Stargardt diseaseâ€3 mutation in the mouse Elovl4 gene causes retinal deficiency of C32–C36 acyl phosphatidylcholines. FEBS Letters, 2007, 581, 5459-5463.	2.8	58
75	Sulfation, the Up-and-Coming Post-Translational Modification:  Its Role and Mechanism in Proteinâ^'Protein Interaction. Journal of Proteome Research, 2007, 6, 1176-1182.	3.7	29
76	Adenosine Receptor Heteromers and their Integrative Role in Striatal Function. Scientific World Journal, The, 2007, 7, 74-85.	2.1	89
77	Basic Concepts in G-Protein-Coupled Receptor Homo- and Heterodimerization. Scientific World Journal, The, 2007, 7, 48-57.	2.1	83
78	MALDIâ€ion mobilityâ€TOFMS imaging of lipids in rat brain tissue. Journal of Mass Spectrometry, 2007, 42, 1093-1098.	1.6	236
79	Charge state effect on the zwitterion influence on stability of nonâ€covalent interaction of singleâ€stranded DNA with peptides. Journal of Mass Spectrometry, 2007, 42, 1613-1622.	1.6	22
80	In situ structural characterization of glycerophospholipids and sulfatides in brain tissue using MALDI-MS/MS. Journal of the American Society for Mass Spectrometry, 2007, 18, 17-26.	2.8	120
81	Direct MALDI-MS analysis of cardiolipin from rat organs sections. Journal of the American Society for Mass Spectrometry, 2007, 18, 567-577.	2.8	108
82	Neurotransmitter receptor heteromers and their integrative role in †local modules': The striatal spine module. Brain Research Reviews, 2007, 55, 55-67.	9.0	112
83	Allosteric Modulation of Dopamine D2Receptors by Homocysteine. Journal of Proteome Research, 2006, 5, 3077-3083.	3.7	53
84	IRâ^'MALDIâ^'LDI Combined with Ion Mobility Orthogonal Time-of-Flight Mass Spectrometry. Journal of Proteome Research, 2006, 5, 1484-1487.	3.7	31
85	Decoy Peptides that Bind Dynorphin Noncovalently Prevent NMDA Receptor-Mediated Neurotoxicity. Journal of Proteome Research, 2006, 5, 1017-1023.	3.7	33
86	Phosphate Stabilization of Intermolecular Interactions. Journal of Proteome Research, 2006, 5, 122-126.	3.7	67
87	Brain tissue lipidomics: Direct probing using matrix-assisted laser desorption/ionization mass spectrometry. AAPS Journal, 2006, 8, E391-E395.	4.4	115
88	Brain Tissue Lipidomics: Direct Probing Using Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. AAPS Journal, 2006, 08, E391.	4.4	9
89	Direct tissue analysis of phospholipids in rat brain using MALDI-TOFMS and MALDI-ion mobility-TOFMS. Journal of the American Society for Mass Spectrometry, 2005, 16, 133-138.	2.8	160
90	In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS. Journal of the American Society for Mass Spectrometry, 2005, 16, 2052-2056.	2.8	190

#	Article	IF	Citations
91	Role of Electrostatic Interaction in Receptor–Receptor Heteromerization. Journal of Molecular Neuroscience, 2005, 26, 125-132.	2.3	74
92	How Proteins Come Together in the Plasma Membrane and Function in Macromolecular Assemblies: Focus on Receptor Mosaics. Journal of Molecular Neuroscience, 2005, 26, 133-154.	2.3	28
93	Computer-Assisted Image Analysis of Caveolin-1 Involvement in the Internalization Process of Adenosine A _{2A} –Dopamine D ₂ Receptor Heterodimers. Journal of Molecular Neuroscience, 2005, 26, 177-184.	2.3	35
94	Adenosine A _{2A} and Dopamine D ₂ Heteromeric Receptor Complexes and Their Function. Journal of Molecular Neuroscience, 2005, 26, 209-220.	2.3	207
95	Heptaspanning Membrane Receptors and Cytoskeletal/Scaffolding Proteins: Focus on Adenosine, Dopamine, and Metabotropic Glutamate Receptor Function. Journal of Molecular Neuroscience, 2005, 26, 277-292.	2.3	25
96	Existence and Theoretical Aspects of Homomeric and Heteromeric Dopamine Receptor Complexes and Their Relevance for Neurological Diseases. NeuroMolecular Medicine, 2005, 7, 061-078.	3.4	21
97	Direct Profiling of Lipid Distribution in Brain Tissue Using MALDI-TOFMS. Analytical Chemistry, 2005, 77, 4523-4527.	6.5	216
98	Heme-copper/dioxygen adduct formation relevant to cytochrome c oxidase: spectroscopic characterization of [(6L)Felll-(O22?)-Cull]+. Journal of Biological Inorganic Chemistry, 2005, 10, 63-77.	2.6	25
99	Pathobiology of dynorphins in trauma and disease. Frontiers in Bioscience - Landmark, 2005, 10, 216.	3.0	89
100	Additive Effects of Endogenous Cannabinoid Anandamide and Ethanol on $\hat{l}\pm7$ -Nicotinic Acetylcholine Receptor-Mediated Responses in Xenopus Oocytes. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1272-1280.	2.5	21
101	Induction of Proinflammatory Responses in Macrophages by the Glycosylphosphatidylinositols of Plasmodium falciparum. Journal of Biological Chemistry, 2005, 280, 8606-8616.	3.4	437
102	Localization and Analyses of Small Drug Molecules in Rat Brain Tissue Sections. Analytical Chemistry, 2005, 77, 6682-6686.	6.5	74
103	Study of the Interaction of Chlorisondamine and Chlorisondamine Analogues with an Epitope of the α-2 Neuronal Acetylcholine Nicotinic Receptor Subunit. Journal of Proteome Research, 2005, 4, 532-539.	3.7	8
104	Study of the Fragmentation Patterns of the Phosphate-Arginine Noncovalent Bond. Journal of Proteome Research, 2005, 4, 2360-2363.	3.7	40
105	Amazing Stability of the Arginineâ^'Phosphate Electrostatic Interaction. Journal of Proteome Research, 2005, 4, 1397-1402.	3.7	233
106	Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-d-aspartate receptor stimulation. Journal of Neurochemistry, 2004, 91, 873-880.	3.9	107
107	Orthogonal time-of-flight secondary ion mass spectrometric analysis of peptides using large gold clusters as primary ions. Rapid Communications in Mass Spectrometry, 2004, 18, 371-376.	1.5	83
108	Effects of extracellular pH on the dynorphin A inhibition of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Synapse, 2004, 52, 84-88.	1.2	4

#	Article	IF	CITATIONS
109	Matrix-Implanted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2004, 76, 7288-7293.	6.5	25
110	Analysis of Phosphorylated Peptides by Ion Mobility-Mass Spectrometry. Analytical Chemistry, 2004, 76, 6727-6733.	6.5	72
111	MALDI Matrices for Biomolecular Analysis Based on Functionalized Carbon Nanomaterials. Analytical Chemistry, 2004, 76, 6734-6742.	6.5	96
112	The Mighty Arginine, the Stable Quaternary Amines, the Powerful Aromatics, and the Aggressive Phosphate:Â Their Role in the Noncovalent Minuet. Journal of Proteome Research, 2004, 3, 478-484.	3.7	94
113	Lipid/Peptide/Nucleotide Separation with MALDI-lon Mobility-TOF MS. Analytical Chemistry, 2004, 76, 2187-2195.	6. 5	155
114	Combining Mass Spectrometry and Pull-Down Techniques for the Study of Receptor Heteromerization. Direct Epitopeâ [^] Epitope Electrostatic Interactions between Adenosine A2Aand Dopamine D2Receptors. Analytical Chemistry, 2004, 76, 5354-5363.	6.5	195
115	Adenosine A2A-dopamine D2 receptor–receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism and Related Disorders, 2004, 10, 265-271.	2.2	132
116	Atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) on a quadrupole ion trap mass spectrometer. International Journal of Mass Spectrometry, 2003, 226, 133-150.	1.5	61
117	Interaction of Chlorisondamine with the Neuronal Nicotinic Acetylcholine Receptor. Journal of Proteome Research, 2003, 2, 207-212.	3.7	19
118	Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization. Journal of Biological Chemistry, 2003, 278, 46741-46749.	3.4	401
119	Angiotensin II-acetylcholine noncovalent complexes analyzed with MALDI-ion mobility-TOF MS. Journal of Biomolecular Techniques, 2003, 14, 1-8.	1.5	20
120	Distinguishing between Phosphorylated and Nonphosphorylated Peptides with Ion Mobilityâ^'Mass Spectrometry. Journal of Proteome Research, 2002, 1, 303-306.	3.7	86
121	A study of peptide—Peptide interactions using MALDI ion mobility o-TOF and ESI mass spectrometry. Journal of the American Society for Mass Spectrometry, 2002, 13, 166-169.	2.8	61
122	Fragmentation of phosphopeptides by atmospheric pressure MALDI and ESI/ion trap mass spectrometry. Journal of the American Society for Mass Spectrometry, 2002, 13, 274-283.	2.8	72
123	Resuscitation of Dormant Mycobacterium tuberculosis by Phospholipids or Specific Peptides. Biochemical and Biophysical Research Communications, 2001, 284, 542-547.	2.1	51
124	A Study of peptide-peptide interaction by matrix-assisted laser desorption/ionization. Journal of the American Society for Mass Spectrometry, 2001, 12, 88-96.	2.8	70
125	A direct chemical interaction between dynorphin and excitatory amino acids. , 2001, 26, 395-400.		15
126	Improving the sensitivity of the end-cap reflectron time-of-flight mass spectrometer., 2000, 35, 157-162.		6

#	Article	IF	Citations
127	On-probe sample purification of lipids for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry., 2000, 35, 647-650.		8
128	Peptide sequence information derived by pronase digestion and ammonium sulfate in-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry, 2000, 11, 1000-1008.	2.8	24
129	Simple preparation of multi-valent cyclodextrin–carbohydrate conjugates. Tetrahedron: Asymmetry, 2000, 11, 389-392.	1.8	10
130	Molecular mimicry mediated by MHC class Ib molecules after infection with Gram-negative pathogens. Nature Medicine, 2000, 6, 215-218.	30.7	150
131	Dioxygen and nitric oxide reactivity of a reduced heme/non-heme diiron(II) complex [(5L)FellâcFellî—,Cl]+. Using a tethered tetraarylporphyrin for the development of an active site reactivity model for bacterial nitric oxide reductase. Inorganica Chimica Acta, 2000, 297, 362-372.	2.4	23
132	Glycosylphosphatidylinositol Anchors of <i>Plasmodium falciparum </i> . Journal of Experimental Medicine, 2000, 192, 1563-1576.	8.5	220
133	Elevated A \hat{l}^2 42 in Skeletal Muscle of Alzheimer Disease Patients Suggests Peripheral Alterations of A \hat{l}^2 PP Metabolism. American Journal of Pathology, 2000, 156, 797-805.	3.8	153
134	Characterization of the "Helix Clamp―Motif of HIV-1 Reverse Transcriptase Using MALDI-TOF MS and Surface Plasmon Resonance. Analytical Chemistry, 2000, 72, 2635-2640.	6.5	31
135	Dioxygen Reactivity of Fully Reduced [LFell···Cul]+Complexes Utilizing Tethered Tetraarylporphyrinates:Â Active Site Models for Heme-Copper Oxidases. Inorganic Chemistry, 1999, 38, 2244-2245.	4.0	43
136	Formation and Characterization of a High-Spin Heme-Copper Dioxygen (Peroxo) Complex. Journal of the American Chemical Society, 1999, 121, 9885-9886.	13.7	78
137	High Levels of Circulating A \hat{I}^2 42 Are Sequestered by Plasma Proteins in Alzheimer's Disease. Biochemical and Biophysical Research Communications, 1999, 257, 787-791.	2.1	179
138	Phosphorylation of Simian Cytomegalovirus Assembly Protein Precursor (pAPNG.5) and Proteinase Precursor (pAPNG1): Multiple Attachment Sites Identified, Including Two Adjacent Serines in a Casein Kinase II Consensus Sequence. Journal of Virology, 1999, 73, 9053-9062.	3.4	8
139	Detection of non-covalent interaction of single and double stranded DNA with peptides by MALDI-TOF. Proteins: Structure, Function and Bioinformatics, 1998, 33, 12-21.	2.6	28
140	Natural Ligand of Mouse CD1d1: Cellular Glycosylphosphatidylinositol. Science, 1998, 279, 1541-1544.	12.6	371
141	Detection of nonâ€covalent interaction of single and double stranded DNA with peptides by MALDI‶OF. Proteins: Structure, Function and Bioinformatics, 1998, 33, 12-21.	2.6	1
142	Petide Analysis to the Atomole Level Using a Curved-Field Reflectron MALDI-TOF Mass Spectrometer Journal of the Mass Spectrometry Society of Japan, 1998, 46, 91-96.	0.1	5
143	Identification of a Ganglioside Recognition Domain of Tetanus Toxin Using a Novel Ganglioside Photoaffinity Ligand. Journal of Biological Chemistry, 1997, 272, 30380-30386.	3.4	86
144	Isolation, Chemical Characterization, and Quantitation of AÎ ² 3-Pyroglutamyl Peptide from Neuritic Plaques and Vascular Amyloid Deposits. Biochemical and Biophysical Research Communications, 1997, 237, 188-191.	2.1	170

#	Article	IF	Citations
145	Ferrichrome: Surprising stability of a cyclic peptide-Felll complex revealed by mass spectrometry. Journal of the American Society for Mass Spectrometry, 1997, 8, 1070-1077.	2.8	20
146	Morphology and Toxicity of $\hat{Al^2}$ -(1-42) Dimer Derived from Neuritic and Vascular Amyloid Deposits of Alzheimer's Disease. Journal of Biological Chemistry, 1996, 271, 20631-20635.	3.4	455
147	Hedgehog Patterning Activity: Role of a Lipophilic Modification Mediated by the Carboxy-Terminal Autoprocessing Domain. Cell, 1996, 86, 21-34.	28.9	488
148	Peptide amino acid sequence analysis using matrix-assisted laser desorption/ionization and fourier transform mass spectrometry. Journal of Mass Spectrometry, 1995, 30, 94-98.	1.6	26
149	Assignment of the three disulfide bonds in ShK toxin: A potent potassium channel inhibitor from the sea anemone Stichodactyla helianthus. International Journal of Peptide Research and Therapeutics, 1995, 1, 291-297.	0.1	35
150	Identification of a tap-dependent leader peptide recognized by alloreactive T cells specific for a class Ib antigen. Cell, 1994, 79, 649-658.	28.9	262
151	Inactivation of horseradish peroxidase by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine. Chemical Research in Toxicology, 1994, 7, 843-849.	3.3	4
152	Biological applications of time-of-flight mass spectrometry. Biochemical Society Transactions, 1994, 22, 539-542.	3.4	1
153	Protein Processing in Herpes Viruses. ACS Symposium Series, 1993, , 194-210.	0.5	2
154	Enzymatic digestion on the sample foil as a method for sequence determination by plasma desorption mass spectrometry: the primary structure of porpoise relaxin. International Journal of Mass Spectrometry and Ion Processes, 1991, 111, 77-88.	1.8	14
155	Effects of prednisone, aspirin, and acetaminophen on an in vivo biologic response to interferon in humans. Clinical Pharmacology and Therapeutics, 1988, 44, 239-243.	4.7	7
156	Time Course of Interferon Levels, Antiviral State, $2\hat{a}\in^2$, $5\hat{a}\in^2$ -Oligoadenylate Synthetase and Side Effects in Healthy Men. Journal of Interferon Research, 1987, 7, 29-39.	1.2	38
157	The disposition of 6-deoxyacyclovir, a xanthine oxidase-activated prodrug of acyclovir, in the isolated perfused rat liver. Hepatology, 1987, 7, 345-348.	7.3	19
158	Biologic response (antiviral) to recombinant human interferon alpha 2a as a aunction of dose and route of administration in healthy volunteers. Clinical Pharmacology and Therapeutics, 1987, 42, 567-575.	4.7	24