
Hugo Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7044640/publications.pdf Version: 2024-02-01

HUCO OLIVEIRA

#	Article	IF	CITATIONS
1	Magnetic responsive polymer composite materials. Chemical Society Reviews, 2013, 42, 7099.	18.7	499
2	In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Scientific Reports, 2017, 7, 1778.	1.6	307
3	Magnetic field triggered drug release from polymersomes for cancer therapeutics. Journal of Controlled Release, 2013, 169, 165-170.	4.8	267
4	Functionalization of poly(amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells. Journal of Controlled Release, 2010, 144, 55-64.	4.8	176
5	Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomaterialia, 2009, 5, 2995-3006.	4.1	144
6	Antibodyâ€Functionalized Magnetic Polymersomes: In vivo Targeting and Imaging of Bone Metastases using High Resolution MRI. Advanced Healthcare Materials, 2013, 2, 1420-1424.	3.9	84
7	Chitosan/siRNA Nanoparticles Biofunctionalize Nerve Implants and Enable Neurite Outgrowth. Nano Letters, 2010, 10, 3933-3939.	4.5	78
8	Smart polymersomes for therapy and diagnosis: fast progress toward multifunctional biomimetic nanomedicines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 525-546.	3.3	68
9	3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials, 2021, 269, 120611.	5.7	68
10	Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication, 2020, 12, 035001.	3.7	59
11	Hybrid iron oxide-copolymer micelles and vesicles as contrast agents for MRI: impact of the nanostructure on the relaxometric properties. Journal of Materials Chemistry B, 2013, 1, 5317.	2.9	56
12	Multivalent effect of glycopolypeptide based nanoparticles for galectin binding. Chemical Communications, 2016, 52, 11251-11254.	2.2	49
13	Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly(ethylene imine) and tetanus toxin fragment c. Journal of Controlled Release, 2010, 143, 350-358.	4.8	41
14	Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Acta Biomaterialia, 2019, 99, 154-167.	4.1	40
15	The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment. Acta Biomaterialia, 2016, 29, 435-445.	4.1	39
16	A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1489-e1500.	1.3	37
17	Dorsal root ganglion neurons regulate the transcriptional and translational programs of osteoblast differentiation in a microfluidic platform. Cell Death and Disease, 2017, 8, 3209.	2.7	28
18	Chitosanâ€based gene delivery vectors targeted to the peripheral nervous system. Journal of Biomedical Materials Research - Part A, 2010, 95A, 801-810.	2.1	25

HUGO OLIVEIRA

#	Article	IF	CITATIONS
19	Imidazole-grafted chitosan-mediated gene delivery: <i>in vitro</i> study on transfection, intracellular trafficking and degradation. Nanomedicine, 2011, 6, 1499-1512.	1.7	25
20	Production, purification and characterization of an elastin-like polypeptide containing the Ile-Lys-Val-Ala-Val (IKVAV) peptide for tissue engineering applications. Journal of Biotechnology, 2019, 298, 35-44.	1.9	25
21	3D anatomical and perfusion MRI for longitudinal evaluation of biomaterials for bone regeneration of femoral bone defect in rats. Scientific Reports, 2017, 7, 6100.	1.6	24
22	Nano-Encapsulation of Plitidepsin: In Vivo Pharmacokinetics, Biodistribution, and Efficacy in a Renal Xenograft Tumor Model. Pharmaceutical Research, 2014, 31, 983-991.	1.7	21
23	Sensory neurons from dorsal root ganglia regulate endothelial cell function in extracellular matrix remodelling. Cell Communication and Signaling, 2020, 18, 162.	2.7	21
24	Laser-Assisted Bioprinting for Bone Repair. Methods in Molecular Biology, 2020, 2140, 135-144.	0.4	21
25	The Use of Total Human Bone Marrow Fraction in a Direct Three-Dimensional Expansion Approach for Bone Tissue Engineering Applications: Focus on Angiogenesis and Osteogenesis. Tissue Engineering - Part A, 2015, 21, 861-874.	1.6	20
26	The proangiogenic potential of a novel calcium releasing composite biomaterial: Orthotopic in vivo evaluation. Acta Biomaterialia, 2017, 54, 377-385.	4.1	18
27	Comparative study of membranes induced by PMMA or silicone in rats, and influence of external radiotherapy. Acta Biomaterialia, 2015, 19, 119-127.	4.1	17
28	A Bibliometric Study to Assess Bioprinting Evolution. Applied Sciences (Switzerland), 2017, 7, 1331.	1.3	17
29	A novel nanoparticle delivery system for <i>in vivo</i> targeting of the sciatic nerve: impact on regeneration. Nanomedicine, 2012, 7, 1167-1180.	1.7	16
30	A novel hybrid nanofibrous strategy to target progenitor cells for cost-effective in situ angiogenesis. Journal of Materials Chemistry B, 2016, 4, 6967-6978.	2.9	16
31	Molecular Recognition Force Spectroscopy: A New Tool to Tailor Targeted Nanoparticles. Small, 2011, 7, 1236-1241.	5.2	15
32	From local to global matrix organization by fibroblasts: a 4D laser-assisted bioprinting approach. Biofabrication, 2022, 14, 025006.	3.7	14
33	Cellular Uptake and Cytotoxic Effect of Epidermal Growth Factor Receptor Targeted and Plitidepsin Loaded Co-Polymeric Polymersomes on Colorectal Cancer Cell Lines. Journal of Biomedical Nanotechnology, 2015, 11, 2034-2049.	0.5	13
34	In vitro and in vivo characterization of a novel tricalcium silicate-based ink for bone regeneration using laser-assisted bioprinting. Biofabrication, 2022, 14, 024104.	3.7	13
35	Polymeric micelles and vesicles: biological behavior evaluation using radiolabeling techniques. Pharmaceutical Development and Technology, 2014, 19, 189-193.	1.1	12
36	An easy-to-use and versatile method for building cell-laden microfibres. Scientific Reports, 2016, 6, 33328.	1.6	12

HUGO OLIVEIRA

#	Article	IF	CITATIONS
37	Self-assembled core–shell micelles from peptide-b-polymer molecular chimeras towards structure–activity relationships. Faraday Discussions, 2013, 166, 83.	1.6	11
38	Extracellular matrix (ECM)-derived bioinks designed to foster vasculogenesis and neurite outgrowth: Characterization and bioprinting. Bioprinting, 2021, 22, e00134.	2.9	10
39	In vivo targeted gene delivery to peripheral neurons mediated by neurotropic poly(ethylene) Tj ETQq1 1 0.784314	rggT /Ov	erlock 10 Tf
40	In vitro long term differentiation and functionality of three-dimensional bioprinted primary human hepatocytes: application for in vivo engraftment. Biofabrication, 2022, 14, 035021.	3.7	9
41	Biocompatibility study of two diblock copolymeric nanoparticles for biomedical applications by in vitro toxicity testing. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	7
42	Influence of the threeâ€dimensional culture of human bone marrow mesenchymal stromal cells within a macroporous polysaccharides scaffold on Pannexin 1 and Pannexin 3. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1936-e1949.	1.3	6
43	Cell-assembled extracellular matrix (CAM): a human biopaper for the biofabrication of pre-vascularized tissues able to connect to the host circulation in vivo. Biofabrication, 2022, 14, 015005.	3.7	5
44	Microvalve bioprinting as a biofabrication tool to decipher tumor and endothelial cell crosstalk: Application to a simplified glioblastoma model. Bioprinting, 2021, 24, e00178.	2.9	4
45	Biomaterial-Based Vectors for Targeted Delivery of Nucleic Acids to the Nervous System. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 185-224.	0.6	3
46	Molecular Recognition Force Spectroscopy for Probing Cell Targeted Nanoparticles In Vitro. Methods in Molecular Biology, 2019, 1886, 327-341.	0.4	2