Pourya Mohammadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7044343/publications.pdf

Version: 2024-02-01

40 papers

1,956 citations

279798 23 h-index 302126 39 g-index

40 all docs 40 docs citations

40 times ranked

1832 citing authors

#	Article	IF	Citations
1	Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. Journal of Cleaner Production, 2018, 170, 1536-1543.	9.3	260
2	Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron, 2019, 158, 8-14.	2.2	232
3	Magnetically palladium catalyst stabilized by diaminoglyoxime-functionalized magnetic Fe 3 O 4 nanoparticles as active and reusable catalyst for Suzuki coupling reactions. Journal of Molecular Catalysis A, 2015, 396, 216-223.	4.8	120
4	Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Materials Science and Engineering C, 2019, 97, 624-631.	7.3	119
5	In situ biogenic synthesis of Pd nanoparticles over reduced graphene oxide by using a plant extract (Thymbra spicata) and its catalytic evaluation towards cyanation of aryl halides. Materials Science and Engineering C, 2019, 104, 109919.	7.3	104
6	In Situ Immobilized Silver Nanoparticles on <i>Rubia tinctorum</i> Extract-Coated Ultrasmall Iron Oxide Nanoparticles: An Efficient Nanocatalyst with Magnetic Recyclability for Synthesis of Propargylamines by A ³ Coupling Reaction. ACS Omega, 2019, 4, 13991-14003.	3.5	91
7	Biosynthesis of palladium nanoparticles as a heterogeneous and reusable nanocatalyst for reduction of nitroarenes and Suzuki coupling reactions. Applied Organometallic Chemistry, 2016, 30, 890-896.	3.5	72
8	Catalytic reduction of 4-nitrophenol over Ag nanoparticles immobilized on Stachys lavandulifolia extract-modified multi walled carbon nanotubes. Polyhedron, 2019, 157, 232-240.	2.2	72
9	Sulfamic acid heterogenized on functionalized magnetic Fe ₃ O ₄ nanoparticles with diaminoglyoxime as a green, efficient and reusable catalyst for oneâ€pot synthesis of substituted pyrroles in aqueous phase. Applied Organometallic Chemistry, 2014, 28, 868-873.	3.5	68
10	Alginate modified magnetic nanoparticles to immobilization of gold nanoparticles as an efficient magnetic nanocatalyst for reduction of 4-nitrophenol in water. Journal of Molecular Liquids, 2021, 327, 114868.	4.9	61
11	In Situ Green Synthesis of Pd Nanoparticles on Tannic Acidâ€Modified Magnetite Nanoparticles as a Green Reductant and Stabilizer Agent: Its Application as a Recyclable Nanocatalyst (Fe ₃ O ₄ @TA/Pd) for Reduction of 4â€Nitrophenol and Suzuki Reactions. ChemistrySelect, 2018, 3, 1820-1826.	1.5	51
12	Green synthesis of Ag NPs on magnetic polyallylamine decorated g-C3N4 by Heracleum persicum extract: efficient catalyst for reduction of dyes. Scientific Reports, 2020, 10, 6579.	3.3	50
13	Bio-assisted synthesized Pd nanoparticles supported on ionic liquid decorated magnetic halloysite: an efficient catalyst for degradation of dyes. Scientific Reports, 2020, 10, 6535.	3.3	49
14	Green synthesis of Fe ₃ O ₄ @SiO ₂ â€Ag magnetic nanocatalyst using safflower extract and its application as recoverable catalyst for reduction of dye pollutants in water. Applied Organometallic Chemistry, 2018, 32, e4249.	3.5	47
15	Green synthesis of Pd nanoparticles supported on reduced graphene oxide, using the extract of <i>Rosa canina</i> fruit, and their use as recyclable and heterogeneous nanocatalysts for the degradation of dye pollutants in water. RSC Advances, 2018, 8, 21020-21028.	3.6	46
16	Au nanoparticles decorated on magnetic nanocomposite (GO-Fe3O4/Dop/Au) as a recoverable catalyst for degradation of methylene blue and methyl orange in water. International Journal of Hydrogen Energy, 2019, 44, 23002-23009.	7.1	43
17	Synthesis and characterization of Fe3O4@SiO2 guanidine-poly acrylic acid nanocatalyst and using it for one-pot synthesis of 4H-benzo[b]pyrans and dihydropyrano[c]chromenes in water. Materials Chemistry and Physics, 2019, 228, 140-146.	4.0	42
18	Green synthesis of silver nanoparticles based on oil-water interface method with essential oil of orange peel and its application as nanocatalyst for A3 coupling. Materials Science and Engineering C, 2019, 105, 110031.	7.3	38

#	Article	IF	CITATIONS
19	Gold nanoparticles decorated biguanidine modified mesoporous silica KIT-5 as recoverable heterogeneous catalyst for the reductive degradation of environmental contaminants. Scientific Reports, 2021, 11, 2734.	3.3	37
20	Green synthesis of the Fe3O4@polythiophen-Ag magnetic nanocatalyst using grapefruit peel extract: Application of the catalyst for reduction of organic dyes in water. Journal of Molecular Liquids, 2018, 262, 248-254.	4.9	31
21	Design, synthesis, characterization, and catalytic properties of g-C3N4-SO3H as an efficient nanosheet ionic liquid for one-pot synthesis of pyrazolo[3,4-b]pyridines and bis(indolyl)methanes. Journal of Molecular Liquids, 2020, 303, 112625.	4.9	31
22	Palladium nanoparticles decorated into a biguanidine modified-KIT-5 mesoporous structure: a recoverable nanocatalyst for ultrasound-assisted Suzuki–Miyaura cross-coupling. RSC Advances, 2019, 9, 41581-41590.	3.6	27
23	Evaluation, of the bimetallic photocatalytic performance of Resin–Au–Pd nanocomposite for degradation of parathion pesticide under visible light. Polyhedron, 2019, 170, 132-137.	2.2	26
24	Synthesis of 2,5-Dimethyl- <i>N</i> -substituted Pyrroles Catalyzed by Diethylenetriaminepentaacetic Acid Supported on Fe ₃ O ₄ Nanoparticles. Organic Preparations and Procedures International, 2018, 50, 465-481.	1.3	25
25	Biosynthesis of Au nanoparticles supported on Fe3O4@polyaniline as a heterogeneous and reusable magnetic nanocatalyst for reduction of the azo dyes at ambient temperature. Materials Science and Engineering C, 2019, 98, 19-29.	7.3	24
26	Biosynthesis of Silver Nanoparticles Using Safflower Flower: Structural Characterization, and Its Antibacterial Activity on Applied Wool Fabric. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2525-2532.	3.7	23
27	Green synthesis of silver nanoparticles using <i>Eucalyptus comadulensis</i> leaves extract and its immobilization on magnetic nanocomposite (GOâ€Fe ₃ O ₄ /PAA/Ag) as a recoverable catalyst for degradation of organic dyes in water. Applied Organometallic Chemistry, 2020. 34. e5547.	3.5	22
28	Ag nanoparticles immobilized on new magnetic alginate halloysite as a recoverable catalyst for reduction of nitroaromatics in aqueous media. Scientific Reports, 2021, 11, 17124.	3.3	20
29	Novel magnetic nanoparticle supported ionic liquid as an efficient catalyst for the synthesis of spiro [pyrazole-pyrazolo[3,4-b]pyridine]-dione derivatives under solvent free conditions. Journal of Molecular Structure, 2019, 1178, 401-407.	3.6	19
30	Layered double hydroxides as heterogeneous catalyst systems in the cross-coupling reactions: an overview. Molecular Diversity, 2022, 26, 569-587.	3.9	15
31	Silver incorporated into g-C3N4/Alginate as an efficient and heterogeneous catalyst for promoting click and A3 and KA2 coupling reaction. Scientific Reports, 2021, 11, 14086.	3.3	15
32	A new recyclable 1,4-bis (3-methylimidazolium-1-yl) butane ditribromide [bMImB] \hat{A} ·(Br ₃) ₂ ionic liquid reagent for selective bromination of anilines or phenols and \hat{I} ±-bromination of alkanones under mild conditions. RSC Advances, 2014, 4, 25898-25903.	3.6	14
33	SBA-15/Metformin as a novel sorbent combined with surfactant-assisted dispersive liquid–liquid microextraction (SA-DLLME) for highly sensitive determination of Pb, Cd and Ni in food and environmental samples. Journal of the Iranian Chemical Society, 2018, 15, 753-768.	2.2	13
34	Synthesis and Characterization of Novel Magnetic Nanoparticles Supported Imidazole Ion as an Efficient Catalytic System for the Three-Component Reaction of Arylaldehydes, Malononitrile and \hat{l}_{\pm} -hydroxy or \hat{l}_{\pm} -Amino Active Methylene Compounds. Letters in Organic Chemistry, 2017, 14, .	0.5	12
35	Palladium nanoparticlesâ€decorated triethanolammonium chloride ionic liquidâ€modified TiO ₂ nanoparticles (TiO ₂ /lLâ€Pd): A highly active and recoverable catalyst for Suzuki–Miyaura crossâ€coupling reaction in aqueous medium. Applied Organometallic Chemistry, 2019, 33. e4909.	3.5	9
36	Gold nanoparticles on cyanuric citric acid functionalized magnetic SBA-16 as an effective catalyst for dye reduction. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114392.	2.7	9

#	Article	IF	CITATIONS
37	Ag nanoparticles immobilized on new mesoporous triazine-based carbon (MTC) as green and recoverable catalyst for reduction of nitroaromatic in aqueous media. Scientific Reports, 2020, 10, 19322.	3.3	8
38	Preparation of Antibacterial Cotton Wound Dressing By Green Synthesis Silver Nanoparticles Using Mullein Leaves Extract. Journal of Renewable Materials, 2019, 7, 787-794.	2.2	7
39	Au Nanoparticles Immobilized in Fe ₃ O ₄ /SBAâ€16 Functionalized Melamine–α–Chloroacetic Acid as a Recoverable Nanocatalyst for Reduction of Dye Pollutants in Water. ChemistrySelect, 2019, 4, 7609-7615.	1.5	4
40	Evaluation of lipid-lowering effect of Cynara scolymus extract-loaded mesoporous silica nanoparticles on ultra-lipid-fed mice. Comparative Clinical Pathology, 2018, 27, 513-518.	0.7	O