
InÃ^as F Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7044017/publications.pdf Version: 2024-02-01

INÃAS E DINTO

#	Article	IF	CITATIONS
1	Multiplexed Microfluidic Cartridge for At-Line Protein Monitoring in Mammalian Cell Culture Processes for Biopharmaceutical Production. ACS Sensors, 2021, 6, 842-851.	4.0	12
2	Flex Printed Circuit Board Implemented Graphene-Based DNA Sensor for Detection of SARS-CoV-2. IEEE Sensors Journal, 2021, 21, 13060-13067.	2.4	25
3	Knowing more from less: miniaturization of ligand-binding assays and electrophoresis as new paradigms for at-line monitoring and control of mammalian cell bioprocesses. Current Opinion in Biotechnology, 2021, 71, 55-64.	3.3	5
4	Sample-to-answer COVID-19 nucleic acid testing using a low-cost centrifugal microfluidic platform with bead-based signal enhancement and smartphone read-out. Lab on A Chip, 2021, 21, 2932-2944.	3.1	47
5	Microfluidics as a high-throughput solution for chromatographic process development – The complexity of multimodal chromatography used as a proof of concept. Journal of Chromatography A, 2021, 1658, 462618.	1.8	4
6	Sub-attomole detection of HIV-1 using padlock probes and rolling circle amplification combined with microfluidic affinity chromatography. Biosensors and Bioelectronics, 2020, 166, 112442.	5.3	25
7	Development of a rapid bead-based microfluidic platform for DNA hybridization using single- and multi-mode interactions for probe immobilization. Sensors and Actuators B: Chemical, 2019, 286, 328-336.	4.0	17
8	Optimizing the Performance of Chromatographic Separations Using Microfluidics: Multiplexed and Quantitative Screening of Ligands and Target Molecules. Biotechnology Journal, 2019, 14, e1800593.	1.8	7
9	Label-Free Detection of Biomolecules in Microfluidic Systems Using On-Chip UV and Impedimetric Sensors. IEEE Sensors Journal, 2019, 19, 7803-7812.	2.4	13
10	Silica bead-based microfluidic device with integrated photodiodes for the rapid capture and detection of rolling circle amplification products in the femtomolar range. Biosensors and Bioelectronics, 2019, 128, 68-75.	5.3	33
11	Studies on the purification of antibody fragments. Separation and Purification Technology, 2018, 195, 388-397.	3.9	19
12	Multiplexed microfluidic fluorescence immunoassay with photodiode array signal acquisition for sub-minute and point-of-need detection of mycotoxins. Lab on A Chip, 2018, 18, 1569-1580.	3.1	37
13	Capillary-driven microfluidic device with integrated nanoporous microbeads for ultrarapid biosensing assays. Sensors and Actuators B: Chemical, 2018, 265, 452-458.	4.0	22
14	A regenerable microfluidic device with integrated valves and thin-film photodiodes for rapid optimization of chromatography conditions. Sensors and Actuators B: Chemical, 2018, 255, 3636-3646.	4.0	22
15	Optical biosensing in microfluidics using nanoporous microbeads and amorphous silicon thin-film photodiodes: quantitative analysis of molecular recognition and signal transduction. Journal of Micromechanics and Microengineering, 2018, 28, 094004.	1.5	11
16	Multiplexed microfluidic platform coupled with photodetector array for point-of-need and sub-minute detection of food contaminants. , 2018, , .		0
17	Quantitative analysis of optical transduction in microfluidic biosensing platforms: Nanoporous microbeads coupled with thin-film photodiodes. , 2018, , .		0
18	The application of microbeads to microfluidic systems for enhanced detection and purification of biomolecules. Methods, 2017, 116, 112-124.	1.9	45

InÃ≜s F Pinto

#	Article	IF	CITATIONS
19	Integration of Photosensors in a Nano-liter Scale Chromatography Column for the Online Monitoring of Adsorption/Desorption Kinetics of a Fluorophore-labeled Monoclonal Antibody. Procedia Engineering, 2016, 168, 1426-1429.	1.2	2
20	Point-of-use Ultrafast Single-step Detection of Food Contaminants: A Novel Microfluidic Fluorescence-based Immunoassay with Integrated Photodetection. Procedia Engineering, 2016, 168, 329-332.	1.2	6
21	High-Throughput Nanoliter-Scale Analysis and Optimization of Multimodal Chromatography for the Capture of Monoclonal Antibodies. Analytical Chemistry, 2016, 88, 7959-7967.	3.2	32
22	Multimodal chromatography: debottlenecking the downstream processing of monoclonal antibodies. Pharmaceutical Bioprocessing, 2015, 3, 263-279.	0.8	39
23	Student Collaboration in a Series of Integrated Experiments To Study Enzyme Reactor Modeling with Immobilized Cell-Based Invertase. Journal of Chemical Education, 2015, 92, 1238-1243.	1.1	6
24	Exploring the use of heparin as a first capture step in the purification of monoclonal antibodies from cell culture supernatants. Biochemical Engineering Journal, 2015, 104, 27-33.	1.8	9