Craig W Benkman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7043983/publications.pdf

Version: 2024-02-01

90 papers 3,883 citations

31 h-index

147801

60 g-index

105 all docs 105 docs citations

105 times ranked 3497 citing authors

#	Article	IF	Citations
1	Genomeâ€wide association genetics of an adaptive trait in lodgepole pine. Molecular Ecology, 2012, 21, 2991-3005.	3.9	402
2	Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics, 2010, 11, 180.	2.8	374
3	Adaptation to Single Resources and the Evolution of Crossbill (Loxia) Diversity. Ecological Monographs, 1993, 63, 305-325.	5.4	205
4	The Selection Mosaic and Diversifying Coevolution between Crossbills and Lodgepole Pine. American Naturalist, 1999, 153, S75-S91.	2.1	185
5	DIVERGENT SELECTION DRIVES THE ADAPTIVE RADIATION OF CROSSBILLS. Evolution; International Journal of Organic Evolution, 2003, 57, 1176-1181.	2.3	183
6	THE INFLUENCE OF A COMPETITOR ON THE GEOGRAPHIC MOSAIC OF COEVOLUTION BETWEEN CROSSBILLS AND LODGEPOLE PINE. Evolution; International Journal of Organic Evolution, 2001, 55, 282-294.	2.3	178
7	Reciprocal Selection Causes a Coevolutionary Arms Race between Crossbills and Lodgepole Pine. American Naturalist, 2003, 162, 182-194.	2.1	168
8	A Coevolutionary Arms Race Causes Ecological Speciation in Crossbills. American Naturalist, 2007, 169, 455-465.	2.1	111
9	Food Profitability and the Foraging Ecology of Crossbills. Ecological Monographs, 1987, 57, 251-267.	5.4	109
10	Biotic interaction strength and the intensity of selection. Ecology Letters, 2013, 16, 1054-1060.	6.4	95
11	Wind Dispersal Capacity of Pine Seeds and the Evolution of Different Seed Dispersal Modes in Pines. Oikos, 1995, 73, 221.	2.7	86
12	DIVERSIFYING COEVOLUTION BETWEEN CROSSBILLS AND BLACK SPRUCE ON NEWFOUNDLAND. Evolution; International Journal of Organic Evolution, 2002, 56, 1663-1672.	2.3	83
13	Intake Rates and the Timing of Crossbill Reproduction. Auk, 1990, 107, 376-386.	1.4	73
14	The advantages and evolution of a morphological novelty. Nature, 1991, 349, 519-520.	27.8	70
15	Patterns of genetic variation in the adaptive radiation of New World crossbills (Aves: Loxia). Molecular Ecology, 2006, 15, 1873-1887.	3.9	67
16	INTERACTIONS AMONG MOTHS, CROSSBILLS, SQUIRRELS, AND LODGEPOLE PINE IN A GEOGRAPHIC SELECTION MOSAIC. Evolution; International Journal of Organic Evolution, 2004, 58, 95-101.	2.3	63
17	Adaptations for Seed Dispersal and the Compromises Due to Seed Predation in Limber Pine. Ecology, 1984, 65, 632-642.	3.2	60
18	A KEYSTONE SELECTIVE AGENT? PINE SQUIRRELS AND THE FREQUENCY OF SEROTINY IN LODGEPOLE PINE. Ecology, 2004, 85, 2082-2087.	3.2	59

#	Article	IF	Citations
19	Are the ratios of bill crossing morphs in crossbills the result of frequency-dependent selection?. Evolutionary Ecology, 1996, 10, 119-126.	1.2	47
20	CONVERGENT PATTERNS IN THE SELECTION MOSAIC FOR TWO NORTH AMERICAN BIRD-DISPERSED PINES. Ecological Monographs, 2007, 77, 203-220.	5.4	47
21	Feeding Behavior, Flock-Size Dynamics, and Variation in Sexual Selection in Crossbills. Auk, 1997, 114, 163-178.	1.4	46
22	CONFLICTING SELECTION FROM AN ANTAGONIST AND A MUTUALIST ENHANCES PHENOTYPIC VARIATION IN A PLANT. Evolution; International Journal of Organic Evolution, 2010, 64, 1120-1128.	2.3	46
23	A New Species Of The Red Crossbill (Fringillidae: <i>Loxia</i>) From Idaho. Condor, 2009, 111, 169-176.	1.6	43
24	Genome divergence and diversification within a geographic mosaic of coevolution. Molecular Ecology, 2016, 25, 5705-5718.	3.9	43
25	The Comparative Feeding Rates of North American Sparrows and Finches. Ecology, 1988, 69, 1195-1199.	3.2	41
26	Patterns of coevolution in the adaptive radiation of crossbills. Annals of the New York Academy of Sciences, 2010, 1206, 1-16.	3.8	40
27	Logging, Conifers, and the Conservation of Crossbills. Conservation Biology, 1993, 7, 473-479.	4.7	39
28	ADAPTIVE GEOGRAPHIC VARIATION IN WESTERN SCRUB-JAYS. Ecology, 2001, 82, 2617-2627.	3.2	39
29	THE GEOGRAPHIC SELECTION MOSAIC FOR PONDEROSA PINE AND CROSSBILLS: A TALE OF TWO SQUIRRELS. Evolution; International Journal of Organic Evolution, 2008, 62, 348-360.	2.3	34
30	Low levels of population genetic structure in Pinus contorta (Pinaceae) across a geographic mosaic of co-evolution. American Journal of Botany, 2011, 98, 669-679.	1.7	33
31	A seed predator drives the evolution of a seed dispersal mutualism. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1917-1925.	2.6	32
32	Seed Handling Ability, Bill Structure, and the Cost of Specialization for Crossbills. Auk, 1988, 105, 715-719.	1.4	29
33	Extreme environmental variation sharpens selection that drives the evolution of a mutualism. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1799-1805.	2.6	28
34	Intake Rate Maximization and the Foraging Behaviour of Crossbills. Ornis Scandinavica, 1989, 20, 65.	1.0	27
35	CONSISTENCY AND VARIATION IN PHENOTYPIC SELECTION EXERTED BY A COMMUNITY OF SEED PREDATORS. Evolution; International Journal of Organic Evolution, 2013, 67, 157-169.	2.3	27
36	MORPHOLOGICAL EVOLUTION IN RESPONSE TO FLUCTUATING SELECTION. Evolution; International Journal of Organic Evolution, 1996, 50, 2499-2504.	2.3	26

#	Article	IF	Citations
37	Conflicting selection from fire and seed predation drives fine-scaled phenotypic variation in a widespread North American conifer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9543-9548.	7.1	26
38	Predation, seed size partitioning and the evolution of body size in seed-eating finches. Evolutionary Ecology, 1991, 5, 118-127.	1.2	25
39	Morphological Evolution in Response to Fluctuating Selection. Evolution; International Journal of Organic Evolution, 1996, 50, 2499.	2.3	25
40	COEVOLUTION BETWEEN HISPANIOLAN CROSSBILLS AND PINE: DOES MORE TIME ALLOW FOR GREATER PHENOTYPIC ESCALATION AT LOWER LATITUDE?. Evolution; International Journal of Organic Evolution, 2007, 61, 2142-2153.	2.3	25
41	Survival and population size of a resident bird species are declining as temperature increases. Journal of Animal Ecology, 2012, 81, 352-363.	2.8	24
42	The local introduction of strongly interacting species and the loss of geographic variation in species and species interactions. Molecular Ecology, 2008, 17, 395-404.	3.9	23
43	SEED PREDATION AND SELECTION EXERTED BY A SEED PREDATOR INFLUENCE SUBALPINE TREE DENSITIES. Ecology, 2008, 89, 2960-2966.	3.2	23
44	Landscapeâ€scale ecoâ€evolutionary dynamics: Selection by seed predators and fire determine a major reproductive strategy. Ecology, 2013, 94, 1307-1316.	3.2	23
45	Matching habitat choice in nomadic crossbills appears most pronounced when food is most limiting. Evolution; International Journal of Organic Evolution, 2017, 71, 778-785.	2.3	22
46	Coevolution between crossbills and black pine: the importance of competitors, forest area and resource stability. Journal of Evolutionary Biology, 2009, 22, 942-953.	1.7	21
47	Sage-Grouse and Indirect Interactions: Potential Implications of Coyote Control on Sage-Grouse Populations. Condor, 2006, 108, 747-759.	1.6	20
48	ON THE EVOLUTION AND ECOLOGY OF ISLAND POPULATIONS OF CROSSBILLS. Evolution; International Journal of Organic Evolution, 1989, 43, 1324-1330.	2.3	19
49	CAN SELECTION BY AN ECTOPARASITE DRIVE A POPULATION OF RED CROSSBILLS FROM ITS ADAPTIVE PEAK?. Evolution; International Journal of Organic Evolution, 2005, 59, 2025-2032.	2.3	19
50	Cone and seed trait variation in whitebark pine (Pinus albicaulis; Pinaceae) and the potential for phenotypic selection. American Journal of Botany, 2009, 96, 1050-1054.	1.7	19
51	THE ADAPTIVE SIGNIFICANCE OF SPINES ON PINE CONES. Ecology, 1999, 80, 1221-1229.	3.2	18
52	Diversifying Coevolution between Crossbills and Conifers. Evolution: Education and Outreach, 2010, 3, 47-53.	0.8	18
53	Habitat area and structure affect the impact of seed predators and the potential for coevolutionary arms races. Ecology, 2010, 91, 802-814.	3.2	18
54	The importance of mature conifers to red crossbills in southeast Alaska. Forest Ecology and Management, 1998, 102, 167-172.	3.2	17

#	Article	IF	Citations
55	SAGE-GROUSE AND INDIRECT INTERACTIONS: POTENTIAL IMPLICATIONS OF COYOTE CONTROL ON SAGE-GROUSE POPULATIONS. Condor, 2006, 108, 747.	1.6	17
56	CALL IMITATION AND CALL MODIFICATION IN RED CROSSBILLS. Condor, 2008, 110, 93-101.	1.6	16
57	CAUSES OF VARIATION IN BIOTIC INTERACTION STRENGTH AND PHENOTYPIC SELECTION ALONG AN ALTITUDINAL GRADIENT. Evolution; International Journal of Organic Evolution, 2014, 68, 1710-1721.	2.3	16
58	Why White-Winged Crossbills Do Not Defend Feeding Territories. Auk, 1988, 105, 370-371.	1.4	15
59	Variable resource availability when resource replenishment is constant: The coupling of predators and prey. Auk, 2012, 129, 115-123.	1.4	14
60	THE INFLUENCE OF A COMPETITOR ON THE GEOGRAPHIC MOSAIC OF COEVOLUTION BETWEEN CROSSBILLS AND LODGEPOLE PINE. Evolution; International Journal of Organic Evolution, 2001, 55, 282.	2.3	13
61	Great spotted woodpeckers Dendrocopos major exert multiple forms of phenotypic selection on Scots pine Pinus sylvestris. Journal of Avian Biology, 2011, 42, 429-433.	1.2	13
62	Assortative flocking in crossbills and implications for ecological speciation. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4223-4229.	2.6	13
63	The Natural History of the South Hills Crossbill in Relation to Its Impending Extinction. American Naturalist, 2016, 188, 589-601.	2.1	13
64	When directional selection reduces geographic variation in traits mediating species interactions. Ecology and Evolution, 2013, 3, 961-970.	1.9	12
65	Higher spring temperatures increase food scarcity and limit the current and future distributions of crossbills. Diversity and Distributions, 2018, 24, 473-484.	4.1	12
66	On the advantages of crossed mandibles: an experimental approach. Ibis, 1988, 130, 288-293.	1.9	11
67	Phenotypic Selection Exerted by a Seed Predator Is Replicated in Space and Time and among Prey Species. American Naturalist, 2015, 186, 682-691.	2.1	11
68	Resource stability and geographic isolation are associated with genome divergence in western Palearctic crossbills. Journal of Evolutionary Biology, 2018, 31, 1715-1731.	1.7	11
69	Isolation and Decline of A Population of the Orange-Breasted Falcon. Condor, 2010, 112, 479-489.	1.6	9
70	Assessing the Potential Contributions of Reduced Immigrant Viability and Fecundity to Reproductive Isolation. American Naturalist, 2017, 189, 580-591.	2.1	9
71	Character displacement of a learned behaviour and its implications for ecological speciation. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190761.	2.6	9
72	A 3:1 Ratio of Mandible Crossing Direction in White-Winged Crossbills. Auk, 1988, 105, 578-579.	1.4	7

#	Article	IF	CITATIONS
73	DIVERGENT SELECTION DRIVES THE ADAPTIVE RADIATION OF CROSSBILLS. Evolution; International Journal of Organic Evolution, 2003, 57, 1176.	2.3	7
74	Habitat associations and abundance of a range-restricted specialist, the Cassia Crossbill (<i>Loxia) Tj ETQq0 0 (</i>) rgBT/Ove	erlock 10 Tf 50
7 5	Performance Trade-Offs and Resource Availability Drive Variation in Reproductive Isolation between Sympatrically Diverging Crossbills. American Naturalist, 2022, 199, 362-379.	2.1	4
76	Consequences of trait evolution in a multispecies system. , 2012, , 278-292.		3
77	Enhanced seed defenses potentially relax selection by seed predators against serotiny in lodgepole pine. Ecology and Evolution, 2020, 10, 6001-6008.	1.9	3
78	Evaluating topographic variation as a guide to Cassia crossbill refugia. Forest Ecology and Management, 2021, 494, 119318.	3.2	2
79	From the ground up: biotic and abiotic features that set the course from genes to ecosystems. Ecology and Evolution, 2016, 6, 7032-7038.	1.9	1
80	Crossbills were unlikely resident in the Bahamas; thus, there was no population to be extirpated. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10031-E10032.	7.1	1
81	Forest and cone structure influence where crossbills forage in a managed Scots pine forest. Forest Ecology and Management, 2021, 498, 119560.	3.2	1
82	Can selection by an ectoparasite drive a population of red crossbills from its adaptive peak?. Evolution; International Journal of Organic Evolution, 2005, 59, 2025-32.	2.3	1
83	Made for Each Other: A Symbiosis of Birds and Pines Ronald M. Lanner. Condor, 1998, 100, 190-191.	1.6	O
84	Loye and Alden Miller Research Award 2017, to Carol M. Vleck. Condor, 2017, 119, 868-869.	1.6	0
85	William Brewster Memorial Award 2017, to James D. Nichols. Auk, 2018, 135, 162-162.	1.4	O
86	Marion Jenkinson Service Award 2017, to Erica "Ricky―Dunn. Auk, 2018, 135, 167-167.	1.4	0
87	Elliott Coues Award 2017, to Kevin J. McGraw. Auk, 2018, 135, 163-163.	1.4	O
88	Ralph W. Schreiber Conservation Award 2017, to Daniel Roby. Auk, 2018, 135, 164-164.	1.4	0
89	Nestâ€site selection by Cassia Crossbills and management implications. Journal of Field Ornithology, 2021, 92, 203-211.	0.5	O
90	Response to Hill and Powers: It is irrelevant that the mode and tempo of Cassia crossbill speciation is not typical for birds. Journal of Avian Biology, 2022, 2022, .	1.2	0