Mike Tyers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7043793/publications.pdf

Version: 2024-02-01

47004 43886 21,112 92 47 91 citations h-index g-index papers 100 100 100 28604 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	BioGRID: a general repository for interaction datasets. Nucleic Acids Research, 2006, 34, D535-D539.	14.5	3,407
2	Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science, 2001, 294, 2364-2368.	12.6	1,946
3	The BioGRID interaction database: 2019 update. Nucleic Acids Research, 2019, 47, D529-D541.	14.5	1,096
4	The BioGRID interaction database: 2017 update. Nucleic Acids Research, 2017, 45, D369-D379.	14.5	920
5	The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes. Science, 2008, 320, 362-365.	12.6	892
6	From genomics to proteomics. Nature, 2003, 422, 193-197.	27.8	886
7	The BioGRID interaction database: 2015 update. Nucleic Acids Research, 2015, 43, D470-D478.	14.5	868
8	The <scp>BioGRID</scp> database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Science, 2021, 30, 187-200.	7.6	769
9	Systematic Identification of Pathways That Couple Cell Growth and Division in Yeast. Science, 2002, 297, 395-400.	12.6	719
10	Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature, 2001, 414, 514-521.	27.8	710
11	BoxPlotR: a web tool for generation of box plots. Nature Methods, 2014, 11, 121-122.	19.0	665
12	A Global Protein Kinase and Phosphatase Interaction Network in Yeast. Science, 2010, 328, 1043-1046.	12.6	608
13	A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes and Development, 2004, 18, 2491-2505.	5.9	553
14	Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nature Reviews Microbiology, 2019, 17, 141-155.	28.6	526
15	How Cells Coordinate Growth and Division. Current Biology, 2004, 14, R1014-R1027.	3.9	515
16	The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nature Cell Biology, 2001, 3, 321-324.	10.3	444
17	CDK Activity Antagonizes Whi5, an Inhibitor of G1/S Transcription in Yeast. Cell, 2004, 117, 899-913.	28.9	414
18	The Size of the Nucleus Increases as Yeast Cells Grow. Molecular Biology of the Cell, 2007, 18, 3523-3532.	2.1	354

#	Article	IF	CITATIONS
19	Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. Journal of Biology, 2006, 5, 11.	2.7	276
20	PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nature Methods, 2011, 8, 528-529.	19.0	274
21	A Strategy for Modulation of Enzymes in the Ubiquitin System. Science, 2013, 339, 590-595.	12.6	257
22	The GRID: the General Repository for Interaction Datasets. Genome Biology, 2003, 4, R23.	9.6	238
23	Broadening the horizon – level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biology, 2007, 5, 44.	3.8	237
24	An Allosteric Inhibitor of the Human Cdc34ÂUbiquitin-Conjugating Enzyme. Cell, 2011, 145, 1075-1087.	28.9	203
25	WD40 repeat domain proteins: a novel target class?. Nature Reviews Drug Discovery, 2017, 16, 773-786.	46.4	202
26	Inhibition of Dopamine Receptor D4 Impedes Autophagic Flux, Proliferation, and Survival of Glioblastoma Stem Cells. Cancer Cell, 2016, 29, 859-873.	16.8	169
27	Caenorhabditis elegans is a useful model for anthelmintic discovery. Nature Communications, 2015, 6, 7485.	12.8	163
28	Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. Cancer Cell, 2019, 36, 84-99.e8.	16.8	163
29	Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L. EMBO Journal, 2011, 30, 3052-3064.	7.8	154
30	An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase. Nature Biotechnology, 2010, 28, 733-737.	17.5	136
31	Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends in Cell Biology, 2003, 13, 344-356.	7.9	126
32	The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text. BMC Bioinformatics, 2011, 12, S3.	2.6	121
33	Regulation of Cell Cycle Progression by Swe1p and Hog1p Following Hypertonic Stress. Molecular Biology of the Cell, 2001, 12, 53-62.	2.1	98
34	The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: version 2.0 update. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat026-bat026.	3.0	96
35	Prediction of Synergism from Chemical-Genetic Interactions by Machine Learning. Cell Systems, 2015, 1, 383-395.	6.2	89
36	E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin. Nature Chemical Biology, 2014, 10, 156-163.	8.0	81

#	Article	IF	CITATIONS
37	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell, 2020, 181, 1329-1345.e24.	28.9	79
38	PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nature Communications, 2021, 12, 979.	12.8	77
39	Human <i>CPR</i> (Cell Cycle Progression Restoration) Genes Impart a Far– Phenotype on Yeast Cells. Genetics, 1997, 147, 1063-1076.	2.9	72
40	An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens. Cell Reports, 2015, 13, 1481-1492.	6.4	68
41	Yeast G1 cyclins are unstable in G1 phase. Nature, 1998, 395, 86-89.	27.8	67
42	Size control goes global. Current Opinion in Biotechnology, 2007, 18, 341-350.	6.6	67
43	Data Independent Acquisition analysis in ProHits 4.0. Journal of Proteomics, 2016, 149, 64-68.	2.4	66
44	A High-Resolution Genome-Wide CRISPR/Cas9 Viability Screen Reveals Structural Features and Contextual Diversity of the Human Cell-Essential Proteome. Molecular and Cellular Biology, 2018, 38, .	2.3	66
45	Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1–F-box interface. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3527-3532.	7.1	61
46	Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response. Nature Communications, 2020, 11, 2396.	12.8	59
47	Recurated protein interaction datasets. Nature Methods, 2009, 6, 860-861.	19.0	58
48	A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis. Genes and Development, 2009, 23, 1944-1958.	5.9	55
49	Cdc48/VCP Promotes Chromosome Morphogenesis by Releasing Condensin from Self-Entrapment in Chromatin. Molecular Cell, 2018, 69, 664-676.e5.	9.7	53
50	G1/S Transcription Factor Copy Number Is a Growth-Dependent Determinant of Cell Cycle Commitment in Yeast. Cell Systems, 2018, 6, 539-554.e11.	6.2	52
51	BioGRID: A Resource for Studying Biological Interactions in Yeast. Cold Spring Harbor Protocols, 2016, 2016, pdb.top080754.	0.3	50
52	UM171 Preserves Epigenetic Marks that Are Reduced in Ex Vivo Culture of Human HSCs via Potentiation of the CLR3-KBTBD4 Complex. Cell Stem Cell, 2021, 28, 48-62.e6.	11.1	44
53	Structural basis for the recruitment of glycogen synthase by glycogenin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2831-40.	7.1	43
54	Conserved Structural Mechanisms for Autoinhibition in IpaH Ubiquitin Ligases. Journal of Biological Chemistry, 2012, 287, 268-275.	3.4	39

#	Article	IF	CITATIONS
55	Imipridone Anticancer Compounds Ectopically Activate the ClpP Protease and Represent a New Scaffold for Antibiotic Development. Genetics, 2020, 214, 1103-1120.	2.9	36
56	Robust cullin-RING ligase function is established by a multiplicity of poly-ubiquitylation pathways. ELife, 2019, 8, .	6.0	36
57	Proteome-wide, Structure-Based Prediction of Protein-Protein Interactions/New Molecular Interactions Viewer. Plant Physiology, 2019, 179, 1893-1907.	4.8	34
58	A Loss of Function Analysis of Host Factors Influencing Vaccinia virus Replication by RNA Interference. PLoS ONE, 2014, 9, e98431.	2.5	34
59	An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase. Nature Communications, 2017, 8, 13943.	12.8	33
60	Cell cycle goes global. Current Opinion in Cell Biology, 2004, 16, 602-613.	5 . 4	32
61	Multivalent Interactions with Fbw7 and Pin1 Facilitate Recognition of c-Jun by the SCFFbw7 Ubiquitin Ligase. Structure, 2018, 26, 28-39.e2.	3.3	29
62	BioCreative V BioC track overview: collaborative biocurator assistant task for BioGRID. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw121.	3.0	28
63	The p38/HOG stress-activated protein kinase network couples growth to division in Candida albicans. PLoS Genetics, 2019, 15, e1008052.	3.5	28
64	Discovery of Ibomycin, a Complex Macrolactone that Exerts Antifungal Activity by Impeding Endocytic Trafficking and Membrane Function. Cell Chemical Biology, 2016, 23, 1383-1394.	5.2	27
65	The BioC-BioGRID corpus: full text articles annotated for curation of protein–protein and genetic interactions. Database: the Journal of Biological Databases and Curation, 2017, 2017, baw147.	3.0	24
66	Targeting the INCENP IN-box–Aurora B interaction to inhibit CPC activity <i>in vivo</i> . Open Biology, 2014, 4, 140163.	3.6	23
67	Use of the BioGRID Database for Analysis of Yeast Protein and Genetic Interactions. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot088880.	0.3	23
68	Archipelago of destruction. Nature, 2001, 413, 268-269.	27.8	20
69	A novel p53 regulator, C16ORF72/TAPR1, buffers against telomerase inhibition. Aging Cell, 2021, 20, e13331.	6.7	20
70	Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. Journal of Cell Biology, 2020, 219, .	5 . 2	20
71	Using ProHits to Store, Annotate, and Analyze Affinity Purification–Mass Spectrometry (APâ€MS) Data. Current Protocols in Bioinformatics, 2012, 39, Unit8.16.	25.8	19
72	Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability. PLoS Biology, 2018, 16, e2003980.	5 . 6	19

#	Article	IF	CITATIONS
73	Genome-Wide Screens Reveal that Resveratrol Induces Replicative Stress in Human Cells. Molecular Cell, 2020, 79, 846-856.e8.	9.7	18
74	A novel class of inhibitors that target SRSF10 and promote p53-mediated cytotoxicity on human colorectal cancer cells. NAR Cancer, 2021, 3, zcab019.	3.1	17
75	Identification and optimization of molecular glue compounds that inhibit a noncovalent E2 enzyme–ubiquitin complex. Science Advances, 2021, 7, eabi5797.	10.3	17
76	CLMSVault: A Software Suite for Protein Cross-Linking Mass-Spectrometry Data Analysis and Visualization. Journal of Proteome Research, 2017, 16, 2645-2652.	3.7	16
77	Systematic chemical-genetic and chemical-chemical interaction datasets for prediction of compound synergism. Scientific Data, 2016, 3, 160095.	5.3	12
78	Chemical Interrogation of Nuclear Size Identifies Compounds with Cancer Cell Line-Specific Effects on Migration and Invasion. ACS Chemical Biology, 2022, 17, 680-700.	3.4	12
79	At Long Last, a C-Terminal Bookend for the Ubiquitin Code. Molecular Cell, 2018, 70, 568-571.	9.7	11
80	The microprotein Nrs1 rewires the G1/S transcriptional machinery during nitrogen limitation in budding yeast. PLoS Biology, 2022, 20, e3001548.	5.6	10
81	Real-time tracking of complex ubiquitination cascades using a fluorescent confocal on-bead assay. BMC Biology, 2018, 16, 88.	3.8	9
82	The timing of Start is determined primarily by increased synthesis of the Cln3 activator rather than dilution of the Whi5 inhibitor. Molecular Biology of the Cell, 2022, 33, rp2.	2.1	9
83	G1/S transcription factors assemble in increasing numbers of discrete clusters through G1 phase. Journal of Cell Biology, 2020, 219, .	5.2	8
84	Synthetic Genomics: Rewriting the Genome Chromosome by Chromosome. Molecular Cell, 2017, 66, 441-443.	9.7	7
85	Chemical Genetics Screen Identifies COPB2 Tool Compounds That Alters ER Stress Response and Induces RTK Dysregulation in Lung Cancer Cells. Journal of Molecular Biology, 2021, 433, 167294.	4.2	4
86	Vesicular trafficking is a key determinant of the statin response in acute myeloid leukemia. Blood Advances, 2022, 6, 509-514.	5.2	4
87	Panspecies Small-Molecule Disruptors of Heterochromatin-Mediated Transcriptional Gene Silencing. Molecular and Cellular Biology, 2015, 35, 662-674.	2.3	3
88	Gene Information eXtension (GIX): effortless retrieval of gene product information on any website. Nature Methods, 2019, 16, 665-666.	19.0	3
89	Headâ€ŧoâ€ŧail cyclization of side chainâ€protected linear peptides to recapitulate geneticallyâ€encoded cyclized peptides. Peptide Science, 2022, 114, .	1.8	3
90	Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of Mitochondrial Vulnerability in Acute Myeloid Leukemia. Blood, 2018, 132, 910-910.	1.4	1

MIKE TYERS

#	Article	IF	CITATIONS
91	Phosphorylation-Dependent Substrate Recognition in Ubiquitin-Mediated Proteolysis. , 2002, , 37-66.		O
92	Chemogenomic Approach Unveils the Increased Susceptibility of RUNX1-Mutated AML to Glucocorticoids. Blood, 2018, 132, 4675-4675.	1.4	0