Eric Kalkhoven

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7043686/publications.pdf

Version: 2024-02-01

55 papers 6,852 citations

172207 29 h-index 50 g-index

58 all docs 58 docs citations

58 times ranked

9814 citing authors

#	Article	IF	CITATIONS
1	PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Frontiers in Endocrinology, 2021, 12, 624112.	1.5	167
2	Splice variants of metabolic nuclear receptors: Relevance for metabolic disease and therapeutic targeting. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166183.	1.8	10
3	Comprehensive Profiling of Mammalian Tribbles Interactomes Implicates TRIB3 in Gene Repression. Cancers, 2021, 13, 6318.	1.7	7
4	FXR Isoforms Control Different Metabolic Functions in Liver Cells via Binding to Specific DNA Motifs. Gastroenterology, 2020, 159, 1853-1865.e10.	0.6	47
5	Cytokine Output of Adipocyte-iNKT Cell Interplay Is Skewed by a Lipid-Rich Microenvironment. Frontiers in Endocrinology, 2020, 11, 479.	1.5	11
6	Adipocytes harbor a glucosylceramide biosynthesis pathway involved in iNKT cell activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1157-1167.	1.2	21
7	Natural helix 9 mutants of PPAR \hat{I}^3 differently affect its transcriptional activity. Molecular Metabolism, 2019, 20, 115-127.	3.0	12
8	Endogenous lipid antigens for invariant natural killer T cells hold the reins in adipose tissue homeostasis. Immunology, 2018, 153, 179-189.	2.0	28
9	A Single Complex Agpat2 Allele in a Patient With Partial Lipodystrophy. Frontiers in Physiology, 2018, 9, 1363.	1.3	7
10	Profiling of 3696 Nuclear Receptor–Coregulator Interactions: A Resource for Biological and Clinical Discovery. Endocrinology, 2018, 159, 2397-2407.	1.4	27
11	Immunometabolic Activation of Invariant Natural Killer T Cells. Frontiers in Immunology, 2018, 9, 1192.	2.2	20
12	Nuclear Receptor Nur77 Limits the Macrophage Inflammatory Response through Transcriptional Reprogramming of Mitochondrial Metabolism. Cell Reports, 2018, 24, 2127-2140.e7.	2.9	110
13	Hypoxia-Inducible Lipid Droplet–Associated Is Not a Direct Physiological Regulator of Lipolysis in Adipose Tissue. Endocrinology, 2017, 158, 1231-1251.	1.4	24
14	Differential adipokine receptor expression on circulating leukocyte subsets in lean and obese children. PLoS ONE, 2017, 12, e0187068.	1.1	17
15	Muscle-specific inflammation induced by MCP-1 overexpression does not affect whole-body insulin sensitivity in mice. Diabetologia, 2016, 59, 624-633.	2.9	29
16	Prospective functional classification of all possible missense variants in PPARG. Nature Genetics, 2016, 48, 1570-1575.	9.4	210
17	Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects. Scientific Reports, 2015, 5, 10944.	1.6	43
18	Inflammatory characteristics of distinct abdominal adipose tissue depots relate differently to metabolic risk factors for cardiovascular disease. Atherosclerosis, 2015, 239, 419-427.	0.4	66

#	Article	IF	Citations
19	Allele Compensation in Tip60+/â^' Mice Rescues White Adipose Tissue Function In Vivo. PLoS ONE, 2014, 9, e98343.	1.1	3
20	TIPping the balance in adipogenesis. Adipocyte, 2014, 3, 160-165.	1.3	7
21	CD1d-mediated Presentation of Endogenous Lipid Antigens by Adipocytes Requires Microsomal Triglyceride Transfer Protein. Journal of Biological Chemistry, 2014, 289, 22128-22139.	1.6	30
22	Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity, 2014, 22, 1296-1308.	1.5	142
23	Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovascular Diabetology, 2014, 13, 37.	2.7	98
24	Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity, 2014, 22, 2216-2223.	1.5	128
25	Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell–derived IFN-γ. Journal of Experimental Medicine, 2014, 211, 1393-1405.	4.2	225
26	Early adipogenesis is regulated through USP7-mediated deubiquitination of the histone acetyltransferase TIP60. Nature Communications, 2013, 4, 2656.	5.8	56
27	The serine/threonine phosphatase PPM1B (PP2Cl²) selectively modulates PPARl³ activity. Biochemical Journal, 2013, 451, 45-53.	1.7	33
28	PS10 - 1. Fatty acid inducible myokine ANGPTL4 governs the lipid metabolic response to acute exercise. Nederlands Tijdschrift Voor Diabetologie, 2013, 11, 159-160.	0.0	0
29	PPARÎ 3 Regulates Expression of Carbohydrate Sulfotransferase 11 (CHST11/C4ST1), a Regulator of LPL Cell Surface Binding. PLoS ONE, 2013, 8, e64284.	1.1	10
30	Pref-1 preferentially inhibits heat production in brown adipose tissue. Biochemical Journal, 2012, 443, e3-e5.	1.7	6
31	PS3 - 14. The effect of the exercise-induced muscle secretome on liver gene expression. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 108-109.	0.0	0
32	PS15 - 73. Identification and characterization of microvesicles secreted by human SGBS-adipocytes. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 150-151.	0.0	0
33	PS15 - 74. CD1d-restricted NKT cell function prevents insulin resistance in lean mice, and is regulated by adipocytes. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 151-151.	0.0	0
34	PS18 - 87. A novel FPLD-associated PPARgamma mutant (E379K) displays a selective defect in target gene transcription. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 161-161.	0.0	0
35	PPARÎ 3 as a therapeutic target in cystic fibrosis. Trends in Molecular Medicine, 2012, 18, 283-291.	3.5	26
36	Adipose tissue-resident immune cells: key players in immunometabolism. Trends in Endocrinology and Metabolism, 2012, 23, 407-415.	3.1	244

#	Article	IF	Citations
37	A Novel RNAi Lethality Rescue Screen to Identify Regulators of Adipogenesis. PLoS ONE, 2012, 7, e37680.	1.1	13
38	Natural killer T cells in adipose tissue prevent insulin resistance. Journal of Clinical Investigation, 2012, 122, 3343-3354.	3.9	185
39	Brown vs white adipocytes: The PPARγ coregulator story. FEBS Letters, 2010, 584, 3250-3259.	1.3	95
40	A Multiplex Immunoassay for Human Adipokine Profiling. Clinical Chemistry, 2010, 56, 1320-1328.	1.5	46
41	Peroxisome Proliferator-activated Receptor γ Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81). Journal of Biological Chemistry, 2009, 284, 26385-26393.	1.6	76
42	Nuclear Receptor-Coregulator Interaction Profiling Identifies TRIP3 as a Novel Peroxisome Proliferator-activated Receptor \hat{I}^3 Cofactor. Molecular and Cellular Proteomics, 2009, 8, 2212-2226.	2.5	66
43	The Multiple Endocrine Neoplasia Type 1 (MEN1) Tumor Suppressor Regulates Peroxisome Proliferator-Activated Receptor \hat{I}^3 -Dependent Adipocyte Differentiation. Molecular and Cellular Biology, 2009, 29, 5060-5069.	1.1	54
44	Posttranslational Modifications of PPARâ€Î³: Fineâ€ŧuning the Metabolic Master Regulator. Obesity, 2009, 17, 213-219.	1.5	131
45	Functional implications of genetic variation in human PPARγ. Trends in Endocrinology and Metabolism, 2009, 20, 380-387.	3.1	88
46	The Adipogenic Acetyltransferase Tip60 Targets Activation Function 1 of Peroxisome Proliferator-Activated Receptor \hat{I}^3 . Endocrinology, 2008, 149, 1840-1849.	1.4	60
47	Impaired Peroxisome Proliferator-Activated Receptor Î ³ Function through Mutation of a Conserved Salt Bridge (R425C) in Familial Partial Lipodystrophy. Molecular Endocrinology, 2007, 21, 1049-1065.	3.7	42
48	Familial Partial Lipodystrophy Phenotype Resulting from a Single-Base Mutation in Deoxyribonucleic Acid-Binding Domain of Peroxisome Proliferator-Activated Receptor- \hat{l}^3 . Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1606-1612.	1.8	53
49	MOZ-TIF2 Alters Cofactor Recruitment and Histone Modification at the RARÎ ² 2 Promoter. Journal of Biological Chemistry, 2006, 281, 17124-17133.	1.6	27
50	CBP and p300: HATs for different occasions. Biochemical Pharmacology, 2004, 68, 1145-1155.	2.0	435
51	Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Human Molecular Genetics, 2003, 12, 441-450.	1.4	115
52	The PHD Type Zinc Finger Is an Integral Part of the CBP Acetyltransferase Domain. Molecular and Cellular Biology, 2002, 22, 1961-1970.	1.1	94
53	Fatty Acids, Eicosanoids, and Hypolipidemic Agents Identified as Ligands of Peroxisome Proliferator-Activated Receptors by Coactivator-Dependent Receptor Ligand Assay. Molecular Endocrinology, 1997, 11, 779-791.	3.7	1,070
54	A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 1997, 387, 733-736.	13.7	1,949

#	Article	IF	CITATIONS
55	Function of estrogen receptors in breast cancer. Breast Cancer, 1997, 4, 204-208.	1.3	5