
Yulong Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7043601/publications.pdf Version: 2024-02-01

YHLONG DING

#	Article	IF	CITATIONS
1	Heavy Metal Stress and Some Mechanisms of Plant Defense Response. Scientific World Journal, The, 2015, 2015, 1-18.	0.8	701
2	Silicon Mechanisms to Ameliorate Heavy Metal Stress in Plants. BioMed Research International, 2018, 2018, 1-10.	0.9	72
3	The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with an emphasis on heavy metals. Plant Signaling and Behavior, 2020, 15, 1777372.	1.2	70
4	Exploring key cellular processes and candidate genes regulating the primary thickening growth of <scp>M</scp> oso underground shoots. New Phytologist, 2017, 214, 81-96.	3.5	66
5	Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage. Tree Physiology, 2019, 39, 1201-1214.	1.4	60
6	ldentification of an NAPâ€like transcription factor BeNAC1 regulating leaf senescence in bamboo (<i>Bambusa emeiensis</i> †Viridiflavus'). Physiologia Plantarum, 2011, 142, 361-371.	2.6	56
7	Application of Bamboo Plants in Nine Aspects. Scientific World Journal, The, 2020, 2020, 1-9.	0.8	50
8	Rapid growth of Moso bamboo (<i>Phyllostachys edulis</i>): Cellular roadmaps, transcriptome dynamics, and environmental factors. Plant Cell, 2022, 34, 3577-3610.	3.1	50
9	Silicon dioxide nanoparticles improve plant growth by enhancing antioxidant enzyme capacity in bamboo (Pleioblastus pygmaeus) under lead toxicity. Trees - Structure and Function, 2020, 34, 469-481.	0.9	48
10	The Bamboo Flowering Cycle Sheds Light on Flowering Diversity. Frontiers in Plant Science, 2020, 11, 381.	1.7	46
11	Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo. Tree Physiology, 2018, 38, 641-654.	1.4	42
12	Establishment of an efficient micropropagation and callus regeneration system from the axillary buds of Bambusa ventricosa. Plant Cell, Tissue and Organ Culture, 2015, 122, 1-8.	1.2	33
13	Morphological dissection and cellular and transcriptome characterizations of bamboo pith cavity formation reveal a pivotal role of genes related to programmed cell death. Plant Biotechnology Journal, 2019, 17, 982-997.	4.1	30
14	Cellular and molecular characterization of a thick-walled variant reveal a pivotal role of shoot apical meristem in transverse development of bamboo culm. Journal of Experimental Botany, 2019, 70, 3911-3926.	2.4	29
15	Leaf shape influences the scaling of leaf dry mass vs. area: a test case using bamboos. Annals of Forest Science, 2020, 77, 1.	0.8	29
16	Analysis of 427 genomes reveals moso bamboo population structure and genetic basis of property traits. Nature Communications, 2021, 12, 5466.	5.8	24
17	Why Does Not the Leaf Weight-Area Allometry of Bamboos Follow the 3/2-Power Law?. Frontiers in Plant Science, 2018, 9, 583.	1.7	23
18	The Effect of Silicon Nanoparticles on the Seed Germination and Seedling Growth of Moso Bamboo (<i>Phyllostachys edulis</i>) under Cadmium Stress. Polish Journal of Environmental Studies, 2021, 30, 3033-3042.	0.6	23

YULONG DING

#	Article	IF	CITATIONS
19	Sucrose and starch metabolism during <i>Fargesia yunnanensis</i> shoot growth. Physiologia Plantarum, 2020, 168, 188-204.	2.6	21
20	Transcriptome analysis of lateral buds from Phyllostachys edulis rhizome during germination and early shoot stages. BMC Plant Biology, 2020, 20, 229.	1.6	21
21	Nitric Oxide Ameliorates Plant Metal Toxicity by Increasing Antioxidant Capacity and Reducing Pb and Cd Translocation. Antioxidants, 2021, 10, 1981.	2.2	20
22	A survey of root pressure in 53 Asian species of bamboo. Annals of Forest Science, 2011, 68, 783-791.	0.8	19
23	Mapping and validation of the quantitative trait loci for leaf stayâ€greenâ€associated parameters in maize. Plant Breeding, 2017, 136, 188-196.	1.0	19
24	Microsatellite markers revealed moderate genetic diversity and population differentiation of moso bamboo (Phyllostachys edulis)—a primarily asexual reproduction species in China. Tree Genetics and Genomes, 2017, 13, 1.	0.6	19
25	Zinc Oxide Nanoparticles Improve Pleioblastus pygmaeus Plant Tolerance to Arsenic and Mercury by Stimulating Antioxidant Defense and Reducing the Metal Accumulation and Translocation. Frontiers in Plant Science, 2022, 13, 841501.	1.7	19
26	The effect of temperature on the developmental rates of seedling emergence and leaf-unfolding in two dwarf bamboo species. Trees - Structure and Function, 2018, 32, 751-763.	0.9	18
27	Differential Responses of two Bamboo Species (Phyllostachys Auresulcata `Spectabilis' and) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 Tr
28	ldentification of an AtCRN1-like chloroplast protein BeCRN1 and its distinctive role in chlorophyll breakdown during leaf senescence in bamboo (Bambusa emeiensis â€~Viridiflavus'). Plant Cell, Tissue and Organ Culture, 2013, 114, 1-10.	1.2	16
29	Growth Responses and Photosynthetic Indices of Bamboo Plant (<i>Indocalamus latifolius</i>) under Heavy Metal Stress. Scientific World Journal, The, 2018, 2018, 1-6.	0.8	15
30	The Role of New Members of Phytohormones in Plant Amelioration under Abiotic Stress with an Emphasis on Heavy Metals. Polish Journal of Environmental Studies, 2020, 29, 1009-1020.	0.6	15
31	Symplasmic phloem unloading and post-phloem transport during bamboo internode elongation. Tree Physiology, 2020, 40, 391-412.	1.4	14
32	Co-Application of 24-Epibrassinolide and Titanium Oxide Nanoparticles Promotes Pleioblastus pygmaeus Plant Tolerance to Cu and Cd Toxicity by Increasing Antioxidant Activity and Photosynthetic Capacity and Reducing Heavy Metal Accumulation and Translocation. Antioxidants, 2022, 11, 451.	2.2	14
33	Multi-analysis of sheath senescence provides new insights into bamboo shoot development at the fast growth stage. Tree Physiology, 2021, 41, 491-507.	1.4	13
34	Shoot proliferation and callus regeneration from nodular buds of Drepanostachyum luodianense. Journal of Forestry Research, 2019, 30, 1997-2005.	1.7	11
35	A Review on Bamboo Resource in the African Region: A Call for Special Focus and Action. International Journal of Forestry Research, 2021, 2021, 1-23.	0.2	11
36	Different Physiological and Biochemical Responses of Bamboo to the Addition of TiO2 NPs under Heavy Metal Toxicity. Forests, 2021, 12, 759.	0.9	11

YULONG DING

#	Article	IF	CITATIONS
37	Ectopic-overexpression of an HD-Zip IV transcription factor from Ammopiptanthus mongolicus (Leguminosae) promoted upward leaf curvature and non-dehiscent anthers in Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 2012, 110, 299-306.	1.2	10
38	Anatomical characteristics of fusoid cells and vascular bundles in Fargesia yunnanensis leaves. Journal of Forestry Research, 2016, 27, 1237-1247.	1.7	10
39	Morphological Characteristics and Transcriptome Comparisons of the Shoot Buds from Flowering and Non-Flowering Pleioblastus pygmaeus. Forests, 2020, 11, 1229.	0.9	10
40	Cellular and molecular characterizations of the irregular internode division zone formation of a slow-growing bamboo variant. Tree Physiology, 2022, 42, 570-584.	1.4	10
41	The Investigation of TiO2 NPs Effect as a Wastewater Treatment to Mitigate Cd Negative Impact on Bamboo Growth. Sustainability, 2021, 13, 3200.	1.6	9
42	De novo sequencing of the transcriptome reveals regulators of the floral transition in Fargesia macclureana (Poaceae). BMC Genomics, 2019, 20, 1035.	1.2	8
43	Effects of Silicon in the Amelioration of Zn Toxicity on Antioxidant Enzyme Activities. Toxicology and Environmental Health Sciences, 2018, 10, 90-96.	1.1	4
44	Ultracytochemical localization of Ca2+ during the phloem ganglion development in Phyllostachys edulis. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2006, 1, 219-224.	0.2	2
45	Geographical Distribution of Phacellaria Benth. (Santalaceae) and its Hosts. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2006, 1, 5-8.	0.2	1
46	Genus Decalepis: Biology, Importance and Biotechnological Interventions. Agronomy, 2022, 12, 855.	1.3	0
47	Species Identification and Phylogenetic Reconstruction in <i>Acer</i> Linn. by Restriction Site-Associated DNA Sequencing, Journal of Biobased Materials and Bioenergy, 2022, 16, 218-230.	0.1	0